TOWN OF SPRINGHILL GEOTHERMAL COMMITTEE

TOWN OF SPRINGHILL GEOTHERMAL

DEMONSTRATION PROJECT

REPORT ON THE TEST DRILLING

AND PUMPING TEST RESULTS

PROJECT NO. 4215

JACQUES, WHITFORD & ASSOCIATES LIMITED

CONSULTING ENGINEERS

TOWN OF SPRINGHILL GEOTHERMAL COMMITTEE TOWN OF SPRINGHILL GEOTHERMAL DEMONSTRATION PROJECT REPORT ON THE TEST DRILLING AND PUMPING TEST RESULTS

PROJECT NO. 4215

PROJECT NO. 4215

TOWN OF SPRINGHILL GEOTHERMAL

DEMONSTRATION PROJECT

REPORT ON THE TEST DRILLING

AND PUMPING TEST RESULTS

REPORT TO THE TOWN OF SPRINGHILL GEOTHERMAL COMMITTEE

 $\mathbf{B}\mathbf{Y}$

JACQUES WHITFORD & ASSOCIATES LIMITED

1046 BARRINGTON STREET

HALIFAX, NOVA SCOTIA

SEPTEMBER 17, 1987

TABLE OF CONTENTS

1.0	INTR	ODUCTION .				•		•		•	•	•	•	•	1
	1.1	Background	. • • •			•		•		•	•	•		•	1
	1.2	Previou	s Stud	ies	of	Mi	ne	Wa	ter	F	lea	t	Ε	ump	
		Application	ns		, • •	•		•		•	•			•	2
	1.3	Study Obje	ctives			•		•		•	•			• .	3
	1.4	Project Ra	tionale	• •		•		•	• •	•	•	•	•	•	4
2.0	FIEL	O PROGRAM .	• • •					•			•	•	•	•	7
	2.1	Test Drill	ing .			•		•		•	•		•	•	7
	2.2	Pump Testi	ng Prog	ram .		•		•	• •	•	•	•	• .	•	8
3.0	DISC	USSION						•			•		•	•	10
	3.1	Geologic S	etting			•		•	• •	•	•	•	•	•	10
	3.2	Groundwate	r Condi	tions		•		•		•	•		•	. •	11
	3.3	Pump Test	Results			•		•		•	•	•	•	•	12
	3.4	Water Temp	erature			•	•	•		•	•	•	•	•	15
	3.5	Mine Water	Chemis	try .		•		•		•	•	•	•	•	17
		3.5.1 Tes	t Well	Water	Qua	lit	-у	•		•	•	•	•	•	17
		3.5.2 Red	ox Cond	ition	s an	d I)iss	olve	ed (Gas	sse	s	•	•	18
		3.5.3	Dissolv	ed S	olid	s	an	d i	Phy	sic	cal				
		Chara	cterist	ics .	• •	•		•		•	•	•	•		19
		3.5.4 Maj	or Ion	Chemi	stry	•		•		•	•	•		•	20
		3.5.5 Tra	ce Meta	l Che	mist	ry		•		•	•	•	•	•	22
		3.5.6 Cor	rosion/	Scali	ng P	ote	enti	al		•		•	•	•	23
		3.5.7 Im	plicati	ons o	f Te	mpe	erat	ure	Cha	ang	је	an	d		
_		Aera	tion on	Wate	r Qu	ali	Lty	•	• •	•	•	•	•	•	24
4.0	CONC	LUSIONS				•		•		•	•	•	•		27
5.0	RECO	MMENDATIONS				•		•		•	•	•	•	•	30
6.0	REFE	RENCES				•		•							32

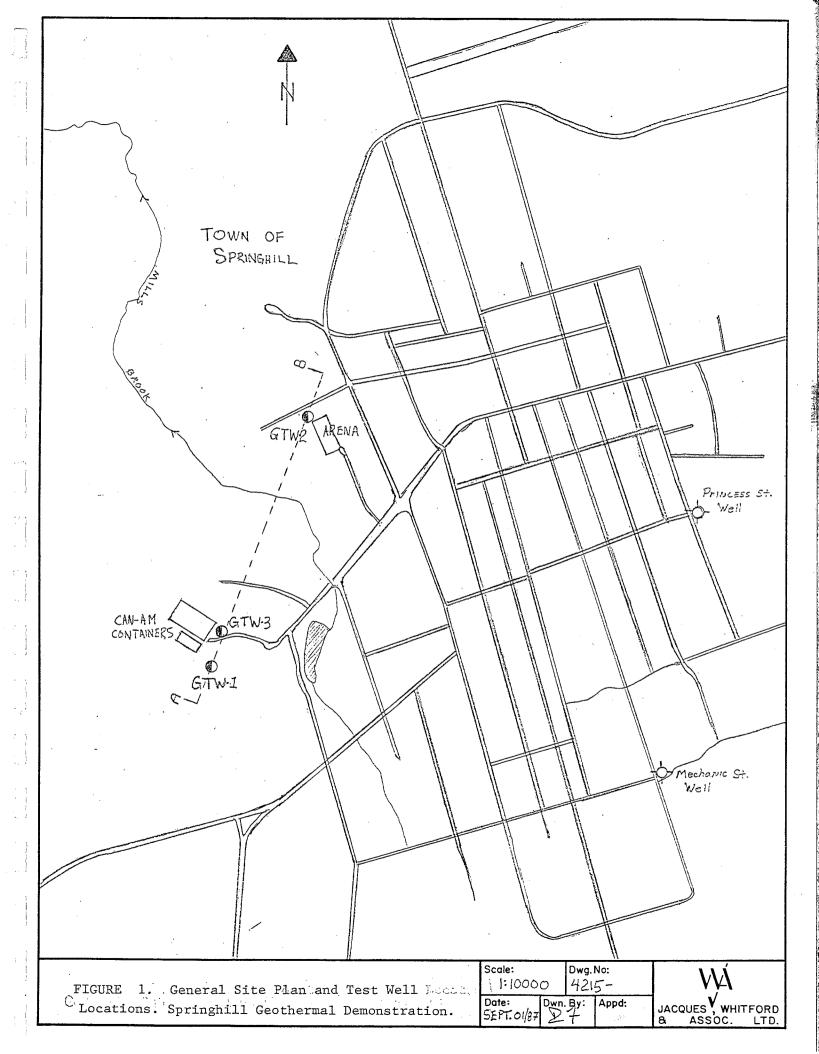
- Figure 1. General Site Location Map
- Figure 2. Pump Test Set-Up Schematic
- Figure 3. Schematic Cross-Section of Geothermal Test Site
- Figure 4. Time-Drawdown plot illustrating Variation in Temperature and Conductance.
- Figure 5. Sulfate Concentration vs Time (7 Day Pump Test)
- Figure 6. Iron Concentration vs Time (7 Day Pump Test)
- Figure 7. Ammonia Concentration vs Time (7 Day Pump Test)
- Figure 8. Durov Diagram of Major Ion Chemistry
- Figure 9. Piper Plot of Major Ion Chemistry

LIST OF TABLES

- Table 1. Analytical Results for Geothermal Test Wells
 (Bailed and Air lift samples and Pump Test Samples)
- Table 2. Field Monitoring Data for Geothermal Pump Test on TW-3, August 7 to 14, 1987.

1.0 INTRODUCTION

A program of test drilling and mine water pump testing was carried out in August 1987 at the site of the abandoned Springhill coal mine workings in springhill, Nova Scotia. This Geothermal Demonstration project was carried out under the direction of the Town of Springhill Geothermal Committee, with technical assistance provided by Jacques Whitford and Associates Ltd. Precision thermal logging services were provided by Mr. J. Leslie.


1.1 Background

The Town of Springhill Nova Scotia plans to investigate the feasibility of utilizing the anomalously warm groundwater (up to 21°C) in abandoned coal mine workings underlying the Town as a source of low cost geothermal heat for industrial or institutional applications located over the workings. The development of a source of low cost thermal energy would improve the economic aspects of existing industries in the area and would attract new industry to this area which would in turn provide increased employment in the Town.

Interest in the utilization of geothermal heat has been ongoing since November of 1984 when Mr. Ralph Ross, Supervisor of All Saints Hospital in Springhill, presented a brief to council on the possible uses of mine water for space heating. The Springhill Town Council approved funding to investigate this idea, and appointed a committee to oversee the project and to visit a site using similar technology in Wilkes Barre, Pennsylvania.

A conceptual engineering study funded by Energy Mines and Resources Canada was completed by J. Booth Engineering Ltd.

in 1986. This report concluded that the concept was technically sound, identified 24 facilities which could benefit from the project, and recommended that a test program be implemented to evaluate the geothermal resources underlying the Town for detailed design of the demonstration project. The Town Council has subsequently obtained funding from Energy Mines and Resources Canada to carry out a test drilling program and hydrogeological evaluation of two sites: one at the Industrial Park adjacent to the Can Am Containers Plant, and the other at the NSPC offices located west of the bowling alley (Figure 1).

1.2 Previous Studies of Mine Water Heat Pump Applications

review of the available heat pump studies and reports indicates that to date there has been little investigation of the use of abandoned mine workings, and specifically coal mine workings, as a potential source of low grade geothermal energy. Two mine water heat pump systems in operation in the Wyoming Valley, Pennsylvania, were described by Schubert and McDaniel, 1982. These systems pump 5.6 to 5.7 L/s (75 to 80 igpm) at a temperature of 13 °C from shallow mine workings located 56 meters below ground surface. Both heating and cooling modes are used. These systems are operating well with no significant problems due to the elevated iron, sulfate and dissolved solids concentrations. The United States Dept. of the Environment has funded a geothermal demonstration project in the Wilkes-Barre area to assess heat pump applications for industrial site, university buildings and a housing project (Schubert & McDaniel, 1982).

In Nova Scotia there has recently been interest by various groups in the utilization of the large groundwater reservoirs associated with the abandoned coal mines in the province,

specifically in Springhill, which has the deepest coal mines in North America, in the Stellarton area of Pictou County and the extensive mines in Cape Breton, which underlie the second largest city in the province. A water supply well (71 m) constructed for Can Am Containers Ltd. in 1976 was reported to produce 4.54 L/s (60 igpm) with a water temperature in the order of 18 to 20°C. This well, which probably intersected coal seams or abandoned mine workings (38 m depth), were abandoned due to poor, (cloudy) water quality.

The feasibility of developing groundwater resources from the abandoned mine workings in Stellarton have been addressed by Meyboom (1961, Cross and Woodlock (1975), Novacorp, 1986 and CBCL (1987). It was concluded that this water is unsuitable for potable uses due to the poor chemical quality of the mine waters which typically exhibits elevated iron, manganese, TDS in the range of 2000 mg/L, sulphate, chloride and ammonia, but may have a number of industrial applications, including heating (CBCL, 1987). Methane extraction studies by Novacorp in the early 1980's indicated that the mine water quality in Allen and Stair pits ranged from a sodium the Foord, bicarbonate to a calcium sulphate water increasing hardness, sodium and chloride with depth. Mine water temperature ranged from 7.5° C in the shallow workings to C for the deeper zones. (Nova Corp water quality monitoring, CBCL, 1987)

1.3 Study Objectives

The intent of this study is to demonstrate the use of geothermal heat from abandoned mine workings through the use of heat pump technology to produce low-cost heat for industrial and institutional consumers in the Springhill area. An assessment of the yield, thermal regime and

geochemical conditions of the shallow mine reservoir is required to evaluate long term heat recovery potential and equipment design.

The study is organized into two phases: Phase 1 of the project will conduct an investigation of the Springhill geothermal resource sufficient to select a demonstration site(s), and provide baseline data on groundwater temperature, chemistry and hydrogeology for the optimum design of equipment materials and configuration, and development of accurate cost estimates by the design engineers.

Phase 2 will involve the design, construction and operation of a geothermal heat demonstration project at two locations in Springhill. A program of monitoring will be in operation throughout the Phase 2 demonstration project to obtain data on system performance and efficiency. This report presents the results of Phase 1 of the Geothermal Demonstration Project.

1.4 Project Rationale

physical nature of groundwater makes it an excellent potential energy source in temperate climates. The specific heat capacity of water (4.18 $J \cdot g^{-1} \cdot K^{-1}$) in general is higher than that of air (approx. 1.0 $J \cdot g^{-1} \cdot K^{-1}$), and in the case with groundwater flow systems, the heat retention capacity of the groundwater is augmented by that of the host aquifer, in this case coal-bearing sandstone and shale. In general, the seasonal variation in groundwater temperature is small, and is a function of depth and distance from the recharge. Furthermore, the average annual groundwater temperature is generally slightly higher than the mean annual air temperature of a given region, and as such, will be

warmer than ambient in winter, and cooler than ambient in summer. In Nova Scotia, the average temperature of groundwater is around 7 degrees celsius, ranging from 3.8 to 10 degrees (NSDOE Records) which reflects the mean annual air temperature of 5.6 degrees celsius estimated for the Springhill area by Vaughan & Somers, (1980). Background groundwater temperatures in the Leamington area south of the study site is in the range of 8 to 10 °C for deep (150 m) test wells, (JWA, 1986). In the Springhill case, extensive deep mine workings provide an added bonus of 1300 metres of geothermal gradient and a large reservoir for heat storage.

A number of issues which could affect the performance of the geothermal system include:

- Long term safe yield of the mine reservoir
- Effects of shallow groundwater flow on the thermal regime, (e.g. aquifers above the workings) which could reduce the amount of heat available for recovery.
- Groundwater chemistry impacts on heat exchangers such as scaling in cooling mode, corrosion, iron precipitation, or explosion hazard (methane).
- Changes caused by temperature change or oxidation of the feed waters.
- Quality of mine waters for discharge to surface waters or re-injection into the mine workings (e.g. TDS, Fe, heavy metals, acid drainage)
- Seasonal transient groundwater temperature fluctuations, especially in the near surface areas.
- Bio-fouling of pump intakes, exchangers, and return well.

The pump testing program was designed to address the above, and to provide factual information regarding the temporal and

spatial variation in groundwater temperatures in and around the mine workings, the volumes of groundwater flow in the strata overlying the mine voids, and the geochemistry of waters within the abandoned mines. The test drilling program was designed to obtain maximum information on temperature distribution, groundwater quality, and hydrogeology so that the mechanical equipment may be designed respecting possible water quality constraints, and the demonstration projects can be initiated using the test holes.

2.0 FIELD PROGRAM

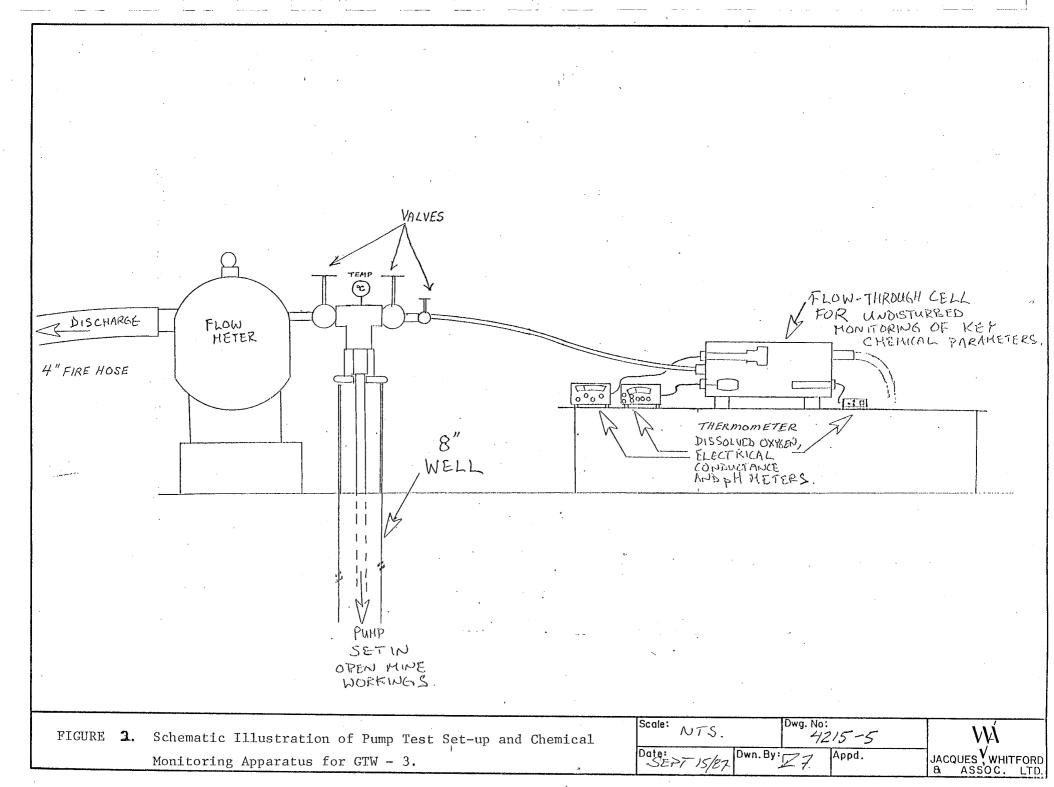
2.1 TEST DRILLING

Three geothermal test wells (GTW) totalling 146 meters of drilling were constructed by R. White Well Drilling Ltd. on July 9, 10, and 14, 1987. The drilling sites were located near the Can Am Container plant and the community rink by Mr. John Calder of Nova Scotia Department of Mines and Energy, utilizing that agencies's mapping and resource drilling data pertinent to the old mine workings (Figure 1). Well drilling supervision and was provided by hydrogeologists from Jacques Whitford & Associates Ltd. (GTW 2 and GTW 3) and Mr. John Leslie of J. Leslie & Associates Ltd. (GTW 1).

Samples of rock cuttings were collected at 1.5 m intervals for interpretation at the JWA lab. Geologic logs were interpreted by JWA hydrogeologists with particular emphasis on the lithology and hydrogeology of the strata overlying the mine workings. Estimates of well yield were determined throughout the drilling by observation of air lift well discharge.

After completion of drilling, each test well was logged thermally and for dissolved oxygen by JWA personnel. Several profiles of temperature were taken by J. Leslie over the next few days after completion of drilling. Samples of ground-water were collected from both the overlying aquifer and from the coal zones after penetration (at GTW 1 and GTW 2). A water sample representative of stored water quality in the mine opening encountered in GTW 3 was collected with a double valve stainless steel bailer to characterize the geochemical regime prior to its disruption by pump testing. The results

of these preliminary analysis (Table 1) were used to select key indicator parameters for monitoring during the pump test.


Geothermal Test Well 3 was reamed to 203 mm diameter to accommodate a 25 HP submersible pump. The well was cased to 8.22 meters into competent bedrock, and the remainder of the hole cleaned to the bottom of the mine opening. Full casing of the hole was not required due to the low yield and good structural integrity of the overlying formations.

The borehole logs are presented in Appendix 1, and include a summary of cumulative well yield determined from blow tests. Chemical analysis of bailed water samples are presented on Table 1.

2.2 Pump Testing Program

A seven day pump test was initiated on August 7, 1987 at a continuous discharge rate of 16.9 L/s (223 igpm). This rate was selected to simulate a major heat pump operation and to remove enough mine water to assess chemical changes. A 25 hp electric submersible pump was installed in the well to a depth of 42.2 m, approximately 1.0 m above the bottom of the workings. A 32 mm diameter PVC tube was attached to the pump column to a depth of 41.6 m to facilitate monitoring of the static water level in the workings during the test, and also allow thermal profiling of the water column after the test. The discharge was directed to a field about 75 meters north of the well, via a 100 mm fire hose. Discharge rate was monitored throughout the test with a series of flow meters, and controlled with a gate valve. Figure 2 illustrates the pump test set up.

Temperature of the discharge water was monitored throughout the test with a thermometer installed on the well head, hand held thermometers and the various instruments used to monitor temperature, conductance, and pH in a flow through cell (Figure 2). Close agreement was observed between the various techniques.

A flow through cell apparatus was installed on the discharge line to facilitate the collection of geochemical samples and to monitor sensitive parameters such as pH, dissolved oxygen, conductance and temperature without contact with the atmosphere. Three mine water samples were collected for complete general analysis. Sub-samples were filtered to 0.45 micron size and preserved with nitric acid for metal scans. addition, 23 filtered and preserved samples taken at 6 hour intervals were analyzed for iron, sulfate and ammonia concentration. Appropriately preserved samples were collected at the beginning and termination of the test for analysis of hydrogen sulphide, methane gas, mercury and tritium. Samples were collected at 6 hour intervals throughout the test for analysis of key indicator parameters (sulphate, iron, ammonia) to assess chemical changes during pumping. All samples were submitted to the Environmental Chemistry Laboratory at the Victoria General Hospital, Halifax for analysis. Results are presented on Tables 1 and 2.

Table 1. Springhill Geothermal Demonstration Project. Chemical Analysis Results.

Well ID Date Depth	GTW1 Jul 10/87 270'	GTW1 Jul 10/87 112'	GTW1 Jul 9/87 205'	GTW2 Jul 14/87 165	GTW2 Jul 10/87 146'	GTW2 Jul 14/87 76'	GTW3 Jul 21/87 142'	GTW3 Aug 7/87 146'	GTW3 Aug 10/87 146'	GTW3 Aug 14/87 146'
Est Yield	30	30	30	30	100	120	400+	225	225	225
Sampled	bailed	bailed	airlift	bailed	airlift	bailed	bailed	1 h	72 h	168 h
		201100	WEI LIL C	Dulled	dillic	Dailed	Dailed	T 11	72 11	T00 II
Sodium	90.00	53.00	37.00	22.00	22.00	37.00	64.00	56,00	600.00	500.00
Potassium	10.50	14.50	10.50	14.00	14.00	13.00	18.30	14.00	26.00	580.00
Calcium	130.00	200.00	220.00	220.00	230.00	210.00	176.00	165.00		27.00
Magnesium	38.00	63.00	76.00	120.00	100.00	120.00	54.00	47.00	364.00	364.00
Hardness	481.00	739.00	862.00	1043.00	986.00	1018.00	662.00	606.00	149.00 1522.00	147.00
Alkalinity	290.00	320.00	002.00	530.00	900.00	555.00	580.00	650.00	679.00	1514.00
Sulphate	243.00	370.00	440.00	510.00	503.00	445.00	14.00	32.30		670.00
Chloride	47.00	67.00	440.00	45.00	303.00	46.00	58.00		1540.00	1680.00
Fluoride	0.40	0.20	<0.1	<0.1	0.20	0.20	0.30	55.00	480.00	450.00
Silica	10.00	11.00	70.1	4.30	0.20	0.20	21.00	0.20	0.30	0.20
O-Phosphorus	<0.01	<0.01		<0.01		•	<0.01	22.00 0.24	16.00 <0.01	16.00
Nitrate	<0.05	<0.05		0.05		<0.05	<0.01			<0.01
Ammonia	0.17	0.28		0.16		0.10	1.60	<0.05	<0.05	<0.05
Arsenic	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	1.30	1.70	1.70
Iron	2.90	3.40	5.30	5.50	4.80	0.90	8.70	<0.005	<0.005	<0.005
Manganese	0.53	0.82	3.30	1.10	2.00	0.90	1.10	0.06	22.00	22.00
Lead	0.006	0.014		<0.002	<0.002	<0.002		0.81	1.10	1.10
Copper	<0.01	0.01	•	<0.01	0.02	<0.01	0.007 0.03	0.003	0.852	<0.002
Zinc	0.03	0.06	4	0.20	0.02	<0.01		0.01	0.10	<0.01
Tot. Sol.	1117	1268	1453	0.20	1450		0.07	0.07	0.10	0.12
S. Sol.	362	. 202	1433		239	1333	993	781	3546	3734
TDS	755	1066				44	203	3	46	27
Color	15	50	•	100	1211	1290	790	778	3500	3707
Turbidity	115	105		65	125	18	275	18	25	70
Conductance	1083	1360		1590	130	27	110	2	125	125
pH	7.50	7.40	7.50		1460	1670	1207	1244	4350	4420
Langlier Index		0.77	7.50	7.00	7.40	7.00	7.10	7.00	6.80	6.80
Diss. Oxygen	. 0.03	0.77		0.61		0.61	0.68	0.60	0.66	0.65
Temp (C)	12.00				0 20	10.00	12 00	0.20		0.15
Aluminum	12.00			2 20	9.30	13.80	13.00	.0.05		
Boron				3.30				<0.05	<0.05	<0.05
Barium				0.04		,		0.07	0.19	0.19
Chromium				0.03				0.26	0.05	0.04
BOD				0.04				0.01	0.05	0.04
COD				<2		8			•	
COD				<0.05						

All parameters in mg/L, except color (TCU), Turbidity (JTU), Conductance (mmhos/cm), pH

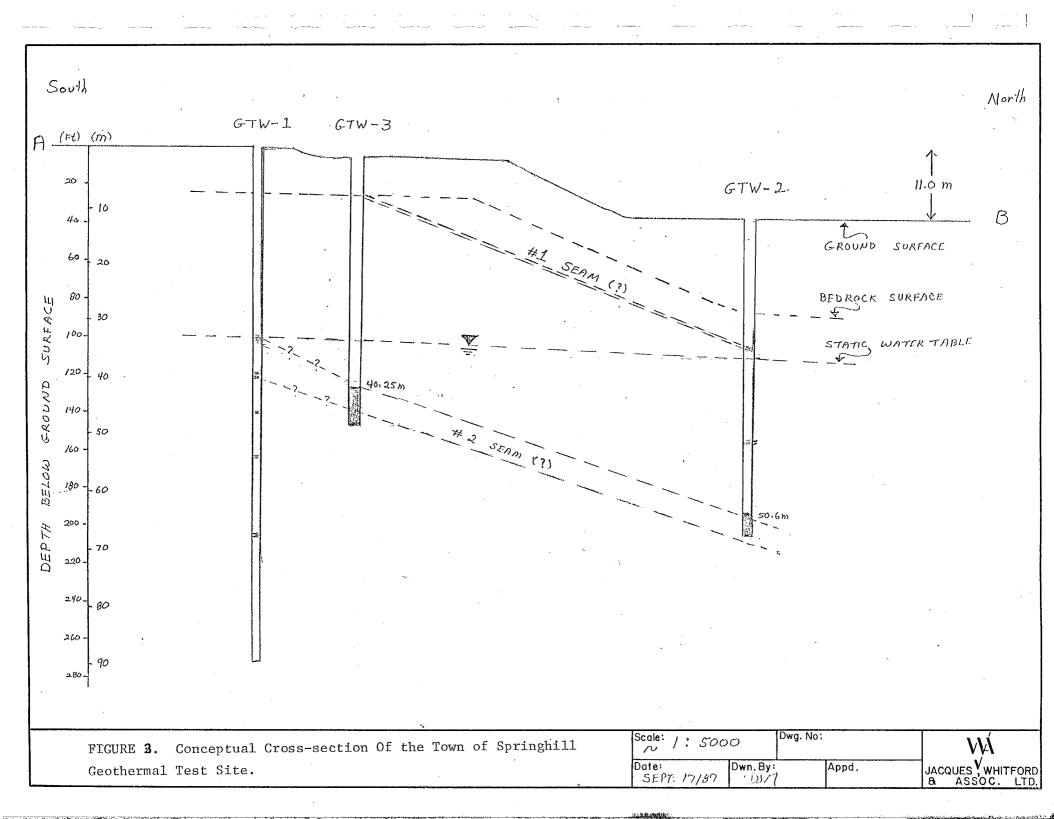
Table 2. Summary of Groundwater Monitoring Data For 7 Day Pumping Test.

Town of Springhill Geotnermal Demonstration Project, August 7 to 14, 1987.

Date	Time hours	Drawdown (metres)	Temp.	Conductance (mmhos/cm)	Diss. O2 (ppm)	Iron (mg/L)	Sulfate (mg/L)	Ammonia (mg/L)	рН
Aug. 7/87	0.1	0.01	14.2	820	0.75				7.07
	1	0.11	13.8	1244	0.40	0.1	32.3	1.3	6.94
	6	0.34	13.8	1000	0.20	4.1	59	1.4	6.87
Aug. 8/87	12	0.55	14.0	1290		7.7	122	1.5	7.03
	18	0.63	14.5	1690		10.4	323	1.7	7.41
	24	0.75	15.7	2290		18.7	790	1.8	6.82
	30	0.81	15.5	2350		22.5	880	1.9	6.98
Aug. 9/87	36	0.88	15.6	. 2400		23.8	920	1.8	6.74
	42	0.95	16.2	3250	•	19.8	1290	1.8	
	48	1.03	17.4	3610		15.0	1380	1.7	6.81
	54	1.07	17.2	3690		15.4	1540	1.7	6.73
Aug. 10/87	60	1.13	17.2	3700		15.0	1540	1.8	
-	66	1.16	17.2	3750		14.7	1450	1.7	•
	72	1.25	17.8	* 3890	• ,	22.0	1540	1.7	6.80
	78	1.27	17.7	3820		15.9	1600	1.8	
Aug. 11/87	84	1.31	17.7	3830	•	15.9	1580	1.8	
	91	1.37	17.5	3910		17.5	1540	1.7	
	96	1.4	17.9	3990		17.2	1500	1.7	
Aug. 12/87	1.1.4	1.52	17.9	4000		17.7	1450	1.8	
Aug. 12/87	120	1.56	18.0	3990	•	18.9	1540	1.9	
	126	1.61	17.9	3910	•	14.2	1580	1.8	
Aug 13/87	132	1.64	18.0	3880	V.	14.0	1580	1.7	
	138	1.69	17.8	3950	•	17.4	1540	1.7	
	144	1.75	18.1	3990		16.0	1540	1.7	
	152	1.79	17.8	3910	0.24	16.9	1.640	1.7	
Aug. 14/87	165	1.83	17.9	· 3790	0.35	19.4	1680	1.7	6.83
	168	1.84	18.0	4010	0.18	22.0	1680	1.7	6.84

3.0 DISCUSSION

3.1 Geologic Setting


The area of investigation is overlain by from 6.7 to 14.6 m of yellow brown silty gravel glacial till, increasing in thickness from GTW 1 northwards to GTW 2. Bedrock forms a topographical trough plunging towards the northwest. Bedrock encountered during the test drilling is described predominantly grayish-green, carbonaceous and siderotic siltstone, shale, mudstone and minor fine-grained sandstone, which conforms to the description of the upper coal-bearing floodplain member of the lower fine facies of the Pennsylvanian-aged Cumberland group (Calder, 1980, Norwest, The fine grained materials tend to dominate in these significant coarse sandstone areas, and no encountered.

N.S. Dept. of Mines records indicate a mine slope dip of about 32 degrees to the northwest, which is consistent with the elevations of the observed coal encounters.

Figure 3 illustrates relationship between the three test wells, coal occurrences and the static water table. Several coal horizons were encountered in all holes. Major coal zones corresponding to the No. 1 and 2 slopes were identified by NSDME personnel. Abandoned water-filled mine workings were encountered in GTW 3 at 40.25 m depth, which were open to about 44 m depth.

Preliminary analysis of the test drilling results suggests that No. 2 slope was encountered in GTW 3 at 40.25 m depth, and possibly in GTW 2 at 50.6 m. Although no open mine workings were found in GTW 1, it is possible that the seam

pinches out in this area (e.g. a small coal seam reported at 32 m depth in GTW 1,) or that a fault may be present. Two significant coal horizons were logged from 39.6 m to 53.3 m depth in GTW 1. The abandoned Can Am well, located 60 m southwest of GTW 3, may have encountered coal measures at 35.6 to 38 in depth; static water levels are reported at 30,.5 m, which is similar to GTW 1 and GTW 3.

In GTW 2 near the bowling alley, a small seam at 21.3 m may correlate with No. 1 seam (J. Calder, pers. com.) outcropping at the surface at GTW 3 where coal fragments were reported at the overburden-bedrock interface. The presence of wood fragments associated with the coal zone at the bottom of GTW 2 suggests that this well is likely immediately adjacent to workings. This is supported by the increase in well yield reported at this depth.

3.2 Groundwater Conditions

Hydrogeological logging of the test holes (Appendix 1) indicated very small groundwater inflows overlying the inferred mine workings at GTW 1 and GTW 3 at the Can Am Containers site, but substantial flows were observed at GTW 2 near the Bowling Alley. A maximum yield of 0.25 L/sec (2 to 3 igpm) was estimated above the coal zones at GTW 1 and GTW 3, and 7.6 L/s (100 igpm) was estimated by air lift blow testing at GTW 2 above the coal horizon. Total yield increased by about 1.5 to 2.3 L/s in the coal horizons in GTW 1 and GTW 2.

The combination of deep static water table (23.8 to 34.1 m below ground surface), direction of groundwater flow, and the increase in yield at the coal horizons at GTW 1 (2.3 L/sec (30 igpm) and GTW 2 (additional 1.5 L/sec (20 igpm) suggests

that local groundwater flow is controlled by bedrock structure and the mine workings which appear to de-water the overlying beds at GTW 1 and 3. Groundwater flows towards the center of the northwesterly trending depression where extensive bedrock fracturing above the mine workings may provide good aquifer storage and more permeable conditions.

The mine waters are confined within the shallow workings. In GTW 3, static water level rose 8.22 m (27 ft) above the top of the mine. The consistent water levels across the site in the three wells (Figure 3) suggests hydraulic connection between the wells, likely due to the mine workings and consequent fracturing of the surrounding host rock. Estimated bailed well yields for the three test wells were 30 igpm (GTW 1), 120 igpm (GTW 2) and in excess of 400 igpm from the mine workings in GTW 3.

During the pump testing it was apparent that the three geothermal test wells were in hydraulic connection, recording total drawdowns of 1.86 m, 1.28 m and 1.36 m for GTW 3, 1 and 2 respectively after 7 days of continuous pumping at a rate of 17 L/sec.

3.3 Pump Test Results

During the test, static water level was monitored in the pumping well (GTW-3) and two observation wells (GTW-1 and GTW-2). At the end of the test, a total of 10,308 m³ (2.27 x 10° imp. gal.) or the equivalent of 771 m of mine shaft 3.65 m square was removed from Number 2 seam. After 7 days of pumping, total drawdown in the shaft was 1.87 m, with 1.28 m and 1.36 m of drawdown recorded at GTW-1 and GTW-2 respectively (Figure 4).

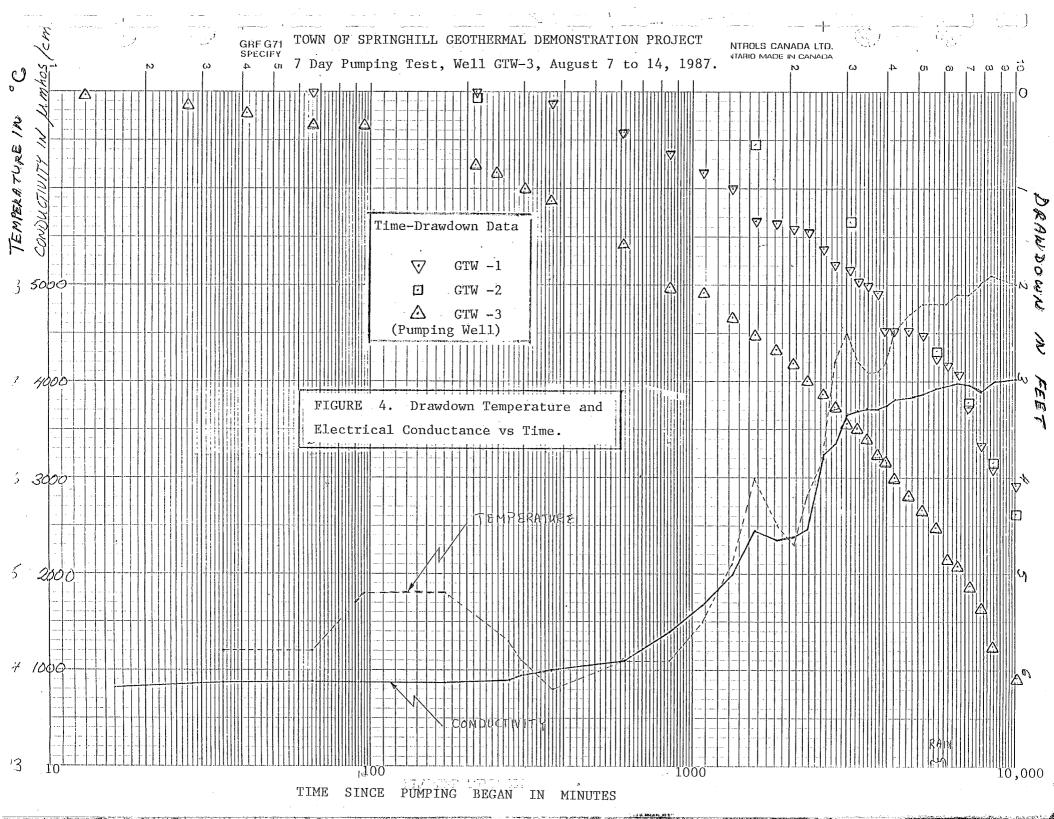


Figure 4 illustrates the drawdown behavior of the three wells during the 7 day test. After 220 minutes of pumping, the two observation wells began to respond, and conductivity values began to rise. The observed decrease in temperature at the time that the observation wells began to respond indicates movement of cooler groundwater towards the pumping well from distant areas. After 1000 minutes of pumping, a steady drawdown rate of 0.2 meters per day was observed in the production well, and 0.16 m/day in the two observation wells. Electrical conductance and temperature both rose steadily with increasing drawdown throughout the remainder of the test (Figure 4). The test clearly shows that the three wells are in hydraulic connection.

decrease in the rate of drawdown between 1000 and 3000 minutes into the test, with associated decreases in temperature and conductance (1550-2100 min, and 3000-3600 min) suggests recharge from an outside source of cooler Iron concentration increased dramatically over groundwater. the same time period. Iron species are more soluble at lower temperatures. The delay in response of observation well GTW-2 until this time (1000 min) suggests that the source is the igpm flow of groundwater encountered in the aquifer suggests hydraulic overlying the coal at GTW-2. This connection between the coal units and the aquifer identified north of the test site. Production wells located in this area will therefore need to be cased through the aquifer to the mine workings to prevent "thermal contamination" of the water.

During the test, 10 to 15 mm of rain from 93 to 101 hours into the test indicated only a negligible effect on drawdown, temperature and conductance (Figure 4). Although no decline was observed, a flattening of the rate of change was noted

(Figure 4). It is therefore possible that sustained periods of heavy rainfall may affect the thermal variation of the shallow system. During the Phase 2 work, careful monitoring of temperature during the spring and fall rain events should be implemented.

An accurate prediction of the long term sustainable yield of GTW 3 is not possible due to the large storage effect caused by many kilometers of mine workings. An estimate can be made, however, based on the rate of drawdown (0.17 m/day) over the final 4 days of the test. The well could be drawn down to the top of the shaft after 50 days of continuous pumping at 17 L/s, unless recharge boundaries are encountered. (Figure 4) infer an apparent system transmissivity of 180 m²/day (12,000 igpd/ft. which suggests a 3 month continuous safe yield of 230 igpm) and a 20 year continuous yield of 18 (175 igpm). This estimated safe yield is considered reasonable due to mine dewatering reports of 23 to 30 L/s. However it should be noted that this reported yield was for the entire mine, not just the shallow zones. The test does indicate that careful attention must be given to long term continuous flow rates in the shallow workings .

Drawdown should not be allowed to drop below the top of the mine workings. This would cause oxidation of the mine water and possible undesirable chemical quality change, such as iron precipitation, turbidity and explosion risk.

The recovery rate was very slow after termination of the pump test. After 4.5 hours of recovery measurements, the production well recovered 0.19 metres, with no observable recovery in the two observation wells. This reflects the slow drawdown response during the pumping test.

3.4 Water Temperature

Groundwater temperatures of up to 21°C (70°F) have been reported from exploration holes in the area (Can Am Containers Ltd.). It is suspected that much of this heat is due to deep geothermal gradients and possibly also exothermic reactions within the mine, which at 1310 meters (4300 feet) deep is one of the deepest coal mines in North America. The degree of input of heat from the coal burn areas to the shallower reaches of the mine by groundwater recharge is at present unknown, however the present work suggests that the majority of the warm water is from depth.

Another concern is the mixing of cooler groundwaters and rain recharge from the overlying bedrock formations with the warm mine waters, thus reducing the efficiency and C.O.P. of the heat pumps. The amount of yield of the test well above the mine openings will greatly affect the total cost of the demonstration well. Hydraulic response testing during the test drilling and the pumping test on GTW-3 suggests that the high yield encountered at GTW-2 will affect the performance of a geothermal well at that location, and indicates that the well must be cased the entire depth to the mine shaft, or packers can be used. At GTW-3 no casing or packers are needed for the demonstration.

Preliminary logging of the test wells with a YSI Model 33 SCT meter, a YSI Model 57 Dissolved Oxygen meter and a precision thermistor indicated consistent temperatures well above the provincial norm which ranges 3.8° to 10° celsius. Groundwater temperatures measured by JWA in the three wells prior to the pumping tests averaged:

GTW	1	11.5°	C	(52.7°	F ₁)
GTW	2	9°	С	(48.2*	F)
GTW	3	13.8°	С	(56.8°	F)

A sample bailed by JWA from the bottom of the workings in GTW 3 recorded a temperature of 15.2°C or 59.9°F.

Thermal logging of the holes by J. Leslie prior to pumping and after the drilling are presented in Appendix 2. exhibited a slight decrease in temperature with depth on July 10, after drilling (Appendix 2) however, a profile of GTW 1 on July 21, 11 days after drilling by JWA, showed a slight temperature increase from 11.2°C at 35 m depth (1 m below water level) to 12°C at 52 m to the bottom of the hole. Logging of GTW 2 forty hours after drilling, indicated the lowest temperatures (9.3 °C) likely caused by the effects of the high flow rates (100 igpm) of shallow groundwater above the coal This log suggests that this shallow zone. groundwater has an average temperature of 9 °C. The profile for GTW 3, one hour after drilling indicated a consistent temperature of 13.35° C. Under pumping conditions over a period of seven days, the water temperature in this hole rose to 18° C.

Comparison of the JWA logging probe results with the high precision thermal logger used by J. Leslie shows a close correlation of about 3 percent.

As discussed in section 3.3, the shallow aquifer zones do affect the thermal variation of the shallow mine workings. Based on the pump test (Figure 4) this could be of concern at lower pumping rates which would require longer time to displace the cooler waters from the system, than at high pumping rates (225 igpm or more).

Based on the above, it is concluded that groundwater in the vicinity of the mine workings has a temperature in excess of regional means. Furthermore, it is possible that temperature could increase with depth and duration of pumping. For the purposes of this study, background groundwater temperature can be considered to be about 9.5°C (GTW 2 and other test wells in the Springhill area). The shallow mine workings exhibit temperatures in the order of 14°C at a depth of only 8.2 m below the water table, rising to at least 18°C under sustained pumping conditions.

3.5 Mine Water Chemistry

3.5.1 Test Well Water Quality

Chemically, the groundwater overlying the mine workings is similar to the moderately hard, alkaline, sodium to calcium bicarbonate water produced by the Town wells at Princess and Mechanic Streets to the east. These wells draw from shallow flow regimes in sandstone and shale units stratigraphically above the coal horizons.

Water quality data from blow test and bailed samples are presented on Table 1. Samples from GTW 1 and GTW 2 indicate a very hard calcium sulphate to calcium bicarbonate water associated with the coal zones. Calcium sulphate water with elevated sodium concentration (220 mg/L) was observed in a blow test sample from GTW 2 at the rink. A sample bailed from the top of the water table in this well showed a calcium bicarbonate water mixed with the sulphate waters, indicating the effect of the high yield of shallow groundwater on the chemistry of this well. Iron concentrations can be expected to be high, based on the oxidized blow test samples. The

sample bailed from the workings after the completion of GTW-3 indicates a hard and alkaline (580 mg/L), calcium bicarbonate water elevated in iron (8.7 mg/L), manganese (1.1 mg/L), total solids (993 mg/L), Total Organic Carbon (105 mg/L), humic acids (33 mg/L) and ammonia (1.6 mg/L). The ph is near neutrality. Elevated suspended solids, colour and turbidity may be partially a result of the drilling process. Sulphate in this sample is low, but may indicate sulphate reduction to $\rm H_2S$ gas in this reducing environment. Dissolved oxygen levels were typically low, decreasing from 7 ppm at the water table, to less than 0.4 ppm in the mine.

3.5.2 Redox Conditions and Dissolved Gasses

Several profiles of dissolved oxygen were made on each well with the temperature logs. Immediately after completion of drilling, these logs showed a substantial decline with depth in concentration of dissolved oxygen, from near saturation at the water table to negligible concentration deeper in the hole, and rising again to supersaturated conditions at the bottom of the hole. This phenomenon is believed to be caused by air driven into the bedrock aquifer during drilling. Subsequent profiles taken 7 days later showed substantial decrease in D.O., which reached background levels of less than 0.05 mg/L after 11 days. Similar results were seen in GTW 3; however, no residual oxygen plume was left in the bottom of the well due to the presence of extensive voids (blow testing was carried out above the workings in the borehole).

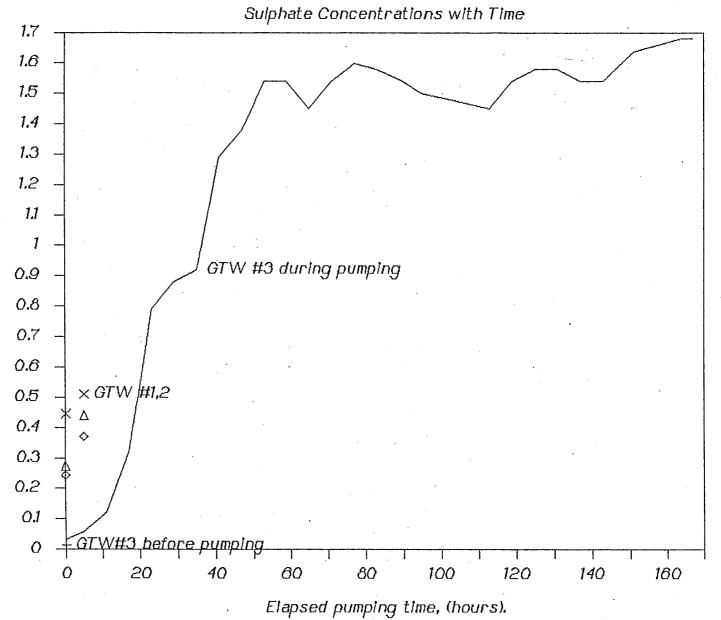
During the Pump testing, dissolved oxygen concentration measured in the flow cell was in the range of 0.18 to 0.32 ppm. At the start of pumping, D.O. declined from 0.75 ppm to 0.20 ppm over the first 6 hours. It is expected that some

oxygen uptake may have occurred between the well head and flow through cell. This very low concentration suggests that the mine waters are in a reducing geochemical environment as would be expected, due primarily to the uptake of oxygen during various redox reactions and organic decomposition. This condition is substantiated by the observed clear water quality upon release from the mine system, which quickly precipitates substantial quantities of iron as it contacts the air at the discharge pipe. Only minor H₂S was discerned during the test, and analysis indicated 0.10 mg/L or less of H2S and 1.8 mg/L of ammonia in this water. Mine water pH levels ranged from 7.1 at the beginning of the test to a consistent average value of 6.8 throughout the test (Table 2). Ammonia rose from 1.3 mg/L at the start of the test, to a consistent value of 1.7 throughout the test.

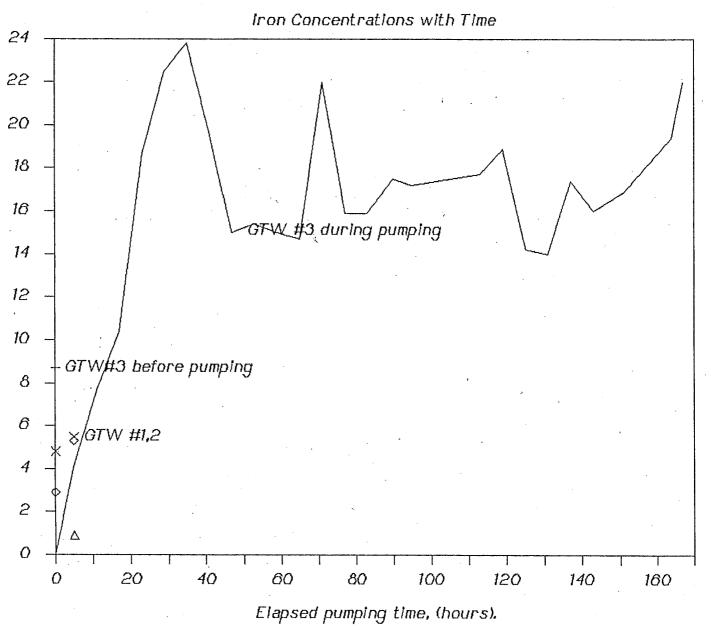
At this time, the determination of the dissolve gasses in the mine water is not yet complete. Dissolved gasses observed in the mine water were not extremely high in quantity, however the presence certain gasses such as methane or hydrogen sulphide would provide the potential for a safety hazard. It is not likely that there is substantial dissolved H₂S. as determination of aqueous phase H₂S showed insignificant amounts. This is fortunate, as H₂S is very toxic as well as corrosive and an explosion hazard. The dissolved gasses are more likely to be methane, CH₄, also an explosive gas. The observed degassing rate and quantities did not suggest that this will be a major consideration, however it must be considered.

3.5.3 Dissolved Solids and Physical Characteristics

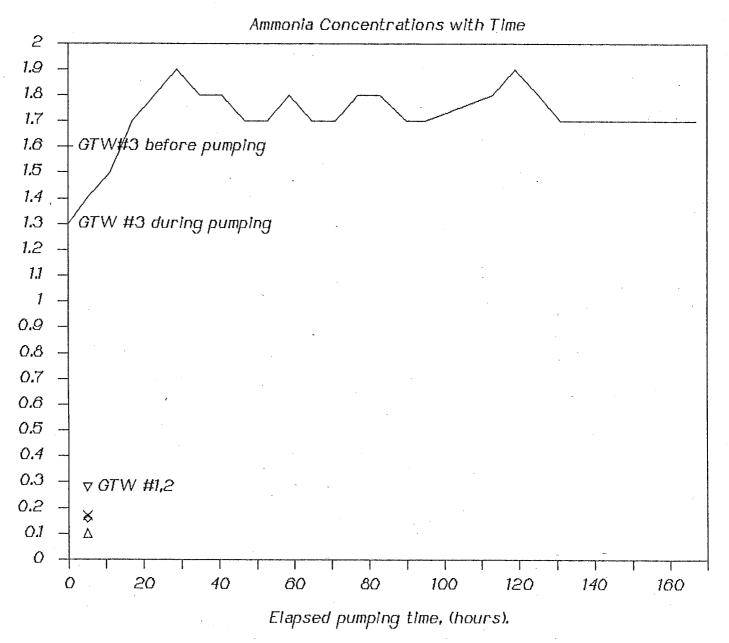
Electrical conductance is an indicator of TDS in groundwater.


Electrical conductance increased from 1000 microsiemens at the beginning of the test to 4420 microsiemens at the end of pumping (Figure 4). This observed increase in conductance is likely due to the dewatering of the low permeability zones above the mine workings. Electrical conductance values for the exploration boreholes ranged from 1029 to 1590 depending on depth. The higher conductivities later in the test reflect the higher TDS typical of coal mine waters. The TDS of the mine water is typically 3500 Mg/L under pumping conditions and about 1250 mg/L at static conditions.

Suspended solids and turbidity are moderate, at 27 to 47 mg/L and 125 JTU respectively (Table 1). This turbidity level should be considered in the design of the heat exchanger system. Color is typically high, ranging from 18 to 70 TCU over the 7 day period. The color is likely due to the elevated concentrations of iron and manganese in the water, and humic acids (33 mg/L) and TOC (105 mg/L). At the point of discharge, the effluent is very clear, but quickly shifts to a red-orange color upon exposure to the atmosphere.

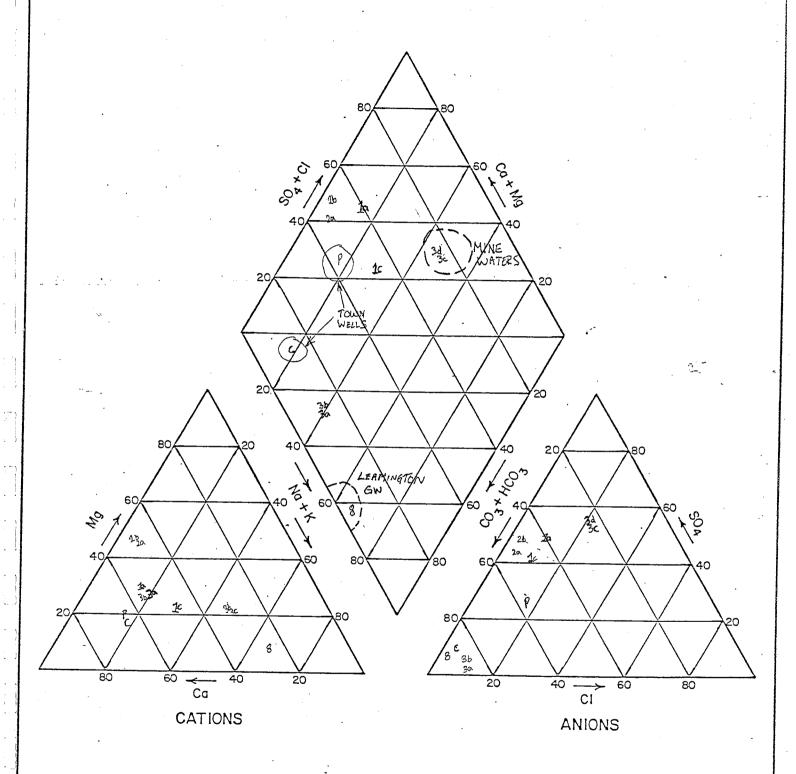

3.5.4 Major Ion Chemistry

The major ion chemistry is shown in the Durov trilinear plot in Fig. 8, and a Piper Plot in Figure 9. Analysis results are presented on Table 1. Figure 8 plots the water samples in a two dimensional field based upon the relative predominance of the major ions. It can be seen that the local groundwaters are predominantly of a calcium-bicarbonate water type, (predominant cations and anions respectively). This sort of groundwater is indicative of fresh recharge water in a hydrogeological setting where calcium carbonate is the mineral of the greatest solubility encountered by the groundwater. The location of the study area, at the subcrop



SPRINGHILL GEOTHERMAL DEMO PROJECT

Majar Jin


SPRINGHILL GEOTHERMAL DEMO PROJECT

ANIONS

PERCENT OF TOTAL MILLIEQUIVALENTS PER LITER 30 SCALE

FIGURE 8. Durov Diagram of Major Ion Chemistry. Town of Springhill Geothermal Demonstration Project.

PERCENT OF TOTAL MILLIEQUIVALENTS PER LITER 30 SCALE

FIGURE 9. Piper Diagram of Major Ion Chemistry. Town of Springhill Geothermal Demonstration Project.

of the dipping strata overlain by sandy overburden, would tend to suggest that the area should be a recharge zone. As the groundwaters 'age' and travel down the flow path there is a tendency for the calcium to be replaced by sodium by cation exchange as the water flows through clay-rich shale units, changing to a sodium bicarbonate type. This is illustrated on the durov diagram by the plot of the groundwater chemistry of test well #8, (JWA,1987) from the leamington district to the south of the study area.

The mine waters are significantly different in terms of their major ion chemistry. They are of a sodium sulphate chemical type, indicative of the dissolution of gypsum, and of cation exchange. Various other samples from geothermal test wells No.1 and 2, and from the Town of Springhill Princess street well, when plotted on the durov diagram fall approximately on a line in between the local recharging groundwaters and the mine waters indicating the possible mixing of the two water types (Figure 8). The mixing of warm mine water with local groundwater could have an influence on long term thermal regime of the shallow mine workings.

The distribution of temperature drawdown, sulfate, iron and ammonia with pumping time are presented on figures 4 to 7. These parameters were selected from the test well chemistries indicator parameters most representative of mine water quality. A steady increase in temperature, conductivity (Figure 4), Sulfate (Figure 5), Iron (Figure 6) and to a lesser extent, Ammonia (Figure 7) was monitored throughout Total iron and ammonia rose rapidly early in the the test. test, peaking at 1.9 mg/L and 24 mg/L respectively 32 to 35 hours into the test. Maximum sulfate (1680 mg/L), conductivity (3700 mmhos/cm), and temperature occurred at about 50 to 55 hours. This suggests that after 50 hours of

pumping the majority of the discharge water was derived from deep mine waters.

Concentrations of sodium and chloride rose from background values of 56 to 64 mg/L sodium and 55 mg/L chloride, to 600 mg/L sodium and 450 mg/L chloride at the end of the pumping test (Table 1). This reflects the increasing conductivity, temperature, iron and sulfate values and suggests a deeper water source. Sodium chloride waters have been reported from deep (152 m) test wells in the Leamington area of Springhill (JWA, 1986).

3.5.5 Trace Metal Chemistry

With the exception of iron (16 to 24 mg/L) and Manganese (1.1 mg/L), trace metal concentrations in the mine water are relatively low. Parameters above the analytical detection limits include: boron (0.02 to 0.19 mg/L), barium (0.03 to 0.26 mg/L), chromium (0.01 to 0.05 mg/l), lead (<0.002 to 0.85 mg/L), copper (<0.01 to 0.03 mg/L), and zinc (<0.01 to 0.20 mg/L). These are not likely to be in environmentally deleterious quantities. concentration exceeded Lead recommended drinking water limits in one sample. All other major metals were found to be below respective detection limits.

No mercury was found in samples field preserved with chromic acid. Significant quantities were not expected to be associated with the coals of the Springhill area, but mercury has been found to be associated with Carboniferous aged coals in the eastern part of north america, (principally in Pennsylvania coals).

3.5.6 Corrosion/Scaling Potential

The mine waters are not expected to be corrosive. The pH is near neutral, (6.8 to 7.4 range). There was little hydrogen sulphide found in the mine waters, (0.1 mg/L and less). The Langlier Calcite saturation Index is a measure of the degree carbonate saturation of the groundwater and hence is commonly used to assess scale or corrosion tendency. The Springhill mine water averages + 0.65 at 20 °C, and would be in the order of +0.25 at groundwater temperatures of 5 to 7 °C at the discharge end of a heat pump system in heating mode, and +1.2 at 50 °C for a system in cooling mode. The thermodynamic equilibrium calculations using (Appendix 3) indicate that the mine waters are slightly oversaturated with respect to most carbonate and silicate species, and slightly undersaturated with respect to gypsum and anhydrite. The system is super-saturated with respect to most iron compounds.

This mine water has a low scale formation tendency, and should not pose any significant problems during heating mode. Only minor amounts of gypsum would be expected to come out of solution by decreasing the temperature to 6°C in a closed system. Most other minerals, including calcite, generally become more soluble at lower temperatures and should not cause increased scaling. In the cooling mode, where groundwater temperatures are increased to say 50 °C, there may be a tendency for precipitation of iron, carbonate, sulfate and silica compounds on the heat exchanger. If the system is to be used for cooling purposes, the use of Cupronickel in the exchanger design materials is recommended. This material tends to inhibit scale build-up due to its tendency to expand and contract during heat exchange.

3.5.7 Implications of Temperature Change and Aeration on Water Quality

Tο evaluate the effect of temperature change and oxidation/aeration on the chemistry of the mine water, a thermodynamic speciation model was utilized. Three runs were made (wateq F) for: the in-site mine water at 18°C and reducing conditions, the same water at 6°C under reducing conditions, and two runs simulating contact with atmosphere at 6°C (heating mode) and 25°C (cooling mode).

The in-situ mine water is supersaturated with respect to iron species, slightly over-saturated with carbonate and silicate species, and slightly undersaturated with respect to sulfate species. These species are most likely to be involved in scale formation at the head exchanger.

In general, cooling the water to 6°C under closed system conditions (ie. no oxygen) should cause little scale problem. Gypsum solubility will decrease with lower temperature, and could cause minor scale. Heating the feed water on the other hand (ie. air conditioning mode) will tend to precipitate iron, carbonate and silicate at the exchanger.

Contact with the air must be avoided in all cases. At 18°C iron becomes supersaturated and precipites from solution. Calcite and dolomite solubility drops slightly, and gypsum remains the same. At 6°C, slightly less iron precipitation is expected and silicate may be deposited. At 25°C or higher, simulations indicate that all iron and carbonate minerals become more oversaturated, and are likely to precipitate.

The most important aspects of the chemical makeup of the mine waters, from the practical perspective of the operation of the system and the re-injection of the water will be Iron exists in the mine water in associated with iron. quantities analyzed at approximately 22 mg/L, total iron as Fe. A computer program used to determine speciation and equilibrium predicts the iron species present to be predominantly Fe²⁺(ag) (16.1 mg/L) and FeSO₄°(ag) (15.7 mg/L). Calculations of potential iron precipitation under various thermodynamic conditions suggest that if exposed to the atmosphere, likely all of the sulphate-complexed iron will precipitate in the form of iron oxide, turbulence, pressure drop and temperature changes upon exposure to the atmosphere. As well, a substantial portion of the dissolved iron as Fe2+ may precipitate in the presence The amounts will depend on the temperature at of oxygen. which oxygen equilibrium is attained.

Under closed conditions, where the feed water is not allowed to contact the air, the precipitation of iron should be less of a problem. At higher temperatures, a larger iron precipitation problem will occur, due to reduced solubility of iron species. Therefore it is suggested that the design of the system include provision for the precipitation by the pumped waters, of approximately 40 mg/L of iron oxide, sulphate and carbonate scale.

The minimum expected iron scaling would be approximately 16 mg/L. The maximum iron scaling, if the water was used for air conditioning, heated to 25C and oxidized in a turbulent state, precipitating all Fe (III) iron as hematite would be approximately 40 mg/L. At the pumping rate used in the test, this corresponds to approximately 60 kg/day discharge to the environment. The iron scale will likely form mainly within

the heat exchangers, and at constrictions etc. in the piping.

Calcium carbonate scaling should not be as great a problem. Although total calcium/magnesium hardness, (as $CaCO_3$) is approximately 1500 mg/L, calcium and magnesium species are not as substantially oversaturated as are those of iron. It is likely, however that some CaCO3 scaling will occur especially in the cooling mode.

The above considerations suggest that there could be significant problems with re-injection of the mine water to wells if the stream becomes oxidized prior to injection. Clogging of the aquifer or injection well will likely occur. Also, discharge of the effluent to surface water courses will result in discoloration and loading of up to 60 Kg per day or iron compounds.

4.0 CONCLUSIONS

- 1. The abandoned mine workings underlying the Town of Springhill are suitable for the development of low grade geothermal heat using conventional heat pump technology.
- 2. The shallow (40 m below ground surface) mine water is capable of at least 17 to 18° Celsius water temperatures under pumping conditions. Mine water temperatures during the test reached 18°C, which is twice the regional average groundwater temperature, and show indications of further increases.
- 3. The groundwater chemical regime associated with the mine workings will be predominantly a sodium-sulfate type of groundwater; reducing in nature, with dissolved oxygen and ammonia concentrations in the order of 0.1-0.2 ppm and 1.8 mg/L respectively; exhibit high hardness (1520 mg/L), Sulfate (1550 to 1650 mg/L), and total dissolved solids (3500 mg/L); a pH in the range of 6.8, and temperature in the range of 17.5 to 18 °C. There is a possibility of iron precipitation, and associated color in this water if it contacts the air, due to elevated concentrations of iron (16 to 24 mg/L) and manganese (1.1 mg/L typical), TOC (105 mg/L) and humic acid (33 mg/L). Suspended solids are in the range of 27 to 47 mg/L.
- 4. The key chemical concerns are the elevated iron, hardness, and sulfate which could precipitate at the heat exchanger or return well, and suspended solids (40 to 80 kg/day, predominantly iron) which could cause fouling of intakes if oxidation takes place.

- 5. The mine waters have a small scale forming tendency, based on laboratory analysis and computer simulations. Under closed conditions, the water should not cause significant problems when the heat pumps are in heating mode, but could deposit scale (iron, carbonate, sulfate, and silicate) under cooling mode operation which raises the temperature of the feed water.
- 6. Thermodynamic calculations indicate a potential for iron precipitation and clogging of re-injection wells or heat exchangers if the source water is allowed to become oxidized by exposure to the atmosphere. The water is supersaturated with respect to iron species, slightly oversaturated in carbonate and silicate, and slightly undersaturated with respect to gypsum and sulfur species.
- 7. The source of the high temperature water appears to be from depth in the mine, rather than from surface sources. This is supported by increasing conductance, iron, sulphate, salt and TDS and low dissolved oxygen with time of pumping. With the exception of a minor response in the No. 1 museum seam (0.12 m), during the test, no direct evidence was seen suggesting a direct connection with the burned waste dumps.
- 8. The shallow mine workings Penetrated by the three test wells are hydraulically interconnected. Drawdown response was observed in all wells and the mine shaft at the museum.
- 9. The high yield of groundwater (7.6 L/s) encountered over test well GTW-2 at the NSPC site is cooler (9.0°C) than the mine water, appears to be in hydraulic connection with the workings (1.34 m of response during pump

testing), and could reduce the overall thermal efficiency of a heat pump well in this area unless the well is cased into the workings.

- 10. A negligible change in temperature and chemistry were observed during a 5 hour rainfall event during the test. It is possible that rainfall events will influence the thermal regime of shallow (<100 m) mine workings, however the influence is expected to be small, and to decrease with depth.
- 11. Pumping test data suggest a recommended safe pumping rate 175 igpm continuous and 200-300 igpm short term, to prevent drawdown below the top of the mine workings. Regardless of the rate, continuous monitoring of drawdown must be implemented to prevent dewatering.

5.0 RECOMMENDATIONS

- 1. The heat pump system and exchanger methodology should be designed respecting the chemical characteristics of the mine water discussed herein.
- 2. It is recommended that a closed loop system be used, such that the mine water does not come in direct contact with the exchanger coils.
- 3. If the system is to be used for both heating and cooling purposes, the exchanger should be constructed of a cupronickel alloy that resists scale build-up due to its tendency to expand and contract with heating and cooling.
- 4. The water from the mine must be kept under pressure and isolated from the atmosphere prior to and during passage through the heat exchanger, to prevent iron precipitation.
- 4. The reject water should be re-introduced back into the mine workings at some distance down gradient from the source. Ideally, the mine water should flow through the heat exchanger under pressure and under ambient, non-oxidized conditions, directly to a subsurface return well where the water is re-injected back into the mine or another mine void below the water table such that oxidation does not occur. A significant likelihood exists of mineral precipitation, (calcium, sulfate, iron, silicate at injection wells under cooling mode operation if atmospheric conditions are encountered.
- 5. Once the demonstration heat pump system has been installed, and during the first year of operation, a

program of monitoring of such factors as temperature variation, hydraulic head fluctuation, water chemistry, power consumption and system performance should be implemented. This should include provision for temperature monitoring and collection of water samples for chemical analysis of key indicators (iron, sulfate, TOC, pH, conductivity, chloride, calcium).

- 6. Test wells in the vicinity of the NSPC office should be cased through the overlying aquifer to prevent thermal contamination of the source water by cooler aquifer water overlying the mine.
- 7. Drawdown should never be allowed to reach the top of the mine opening. The resultant oxidation of the water could adversely affect the heat pump system. Long term safe abstraction rates must be less than the yield of the mine. Pump test data suggest a continuous 20 year yield in the order 135 igpm, and a short term (2 month) yield of 230 igpm. Pumping equipment should include water level sensors and pump cut-out electrodes to prevent dewatering under high pumping rates.
- 8. The geothermal demonstration program should include a shallow monitoring well between the test site and the old waste dump to assess whether any recharge to the shallow mine workings originates from this source.

6.0 REFERENCES

Calder. J.H. (1980) Coal Exploration in the Springhill Coalfield. N.S. Dept. of Mines and Energy, Report 80-81, PP 41-50.

CBCL Limited (1987) Groundwater Development Potential of the Urbanized Sub-Regions of Pictou County, N.S. Report to the Municipality of the County of Pictou.

Cross, H. and Woodlock, T. (1975) Groundwater Potential of Pictou County, N.S. Preliminary report. Water Planning and Management Division, NSDOE. 15 p.

Jacques Whitford & Associates Limited (1986) Groundwater Resources Exploration, Phase 1. Town of Springhill, N.S. Report to the Town of Springhill Water Supply Steering Committee.

Meyboom, P. (1961) Prospects for a large industrial water supply in Two areas of Nova Scotia (Greenhill, Pictou Co. and Milford Hants Co.) GSC Topical Report No. 46. Can. Dept. Mines and Technical Surveys.

Novacorp Ltd (1986) Unpublished data files on the Stellarton Methane Recovery Project.

Norwest Resource Consultants Ltd. (1981) Geological Evaluation of the Springhill Project, For Novaco Ltd. Report No. 8115/6.

Schubert, J.P. and McDaniel, M.J. (1982) Using Mine Waters for Heating and Cooling. Argonne Nat. Laboratory Report 8204108.

Vaughan, J.G. and Somers, G.H. (1980) Regional Water Resources, Cumberland County, N.S. Water PLanning and Management Div., NSDOE. 80 p.

APPENDIX

TEST WELL

PROJECT No. 4215

DATE July 9, 1987

DRILLER R. White Well Drilling ELEVATION 140 m/(Approx.)

U.T.M. 26T-172552

WELL No. G1
DEPTH 82.3 m
CASING LENGTH 8.8 m
ESTIMATED YIELD 2.3 L/S
STATIC WATER LEVEL 34.1 m

· . · · · · · ·	1.M. 201-1/2552	STATIC WATER	LEVI	EL :	34.1	m.
T O DEPTH I	- LITHOLOGIC DESCRIPTION		WATER BEARING FRACTURE	STRATA	WATER LEVEL	CUMULATIVE WELL YIELD (BLOW TEST) L/S,DEPTH IN METRES
- 5 - -10 -	Overburden Medium to fine light grey sandstone (some siltstone) Medium grey siltstone					
-20 -	Medium grey siltstone and fine light medium grey sandstone, (some dark gresandstone) coal seen at 32 m		11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1			- 0.076 L/S
-30 <u>-</u> 35 <u>-</u>	Dark grey siltstone, some brownish gre siltstone and fine sandstone				Y	- 0.23 - 0.30 L/S
-40 -	Grey siltstone - shale Coal Light grey siltstone and shale Coal					_ 0.53 - 0.61 L/S
-50 - -55 -	Dark grey shale, some fine light grey Coal or coal shale Medium grey siltstone and fine light grey fine and medium sandstone	sandstone &				
-60 - -65 -	Light grey fine and medium sandstone					- 2.3 L/S
-70 -	Dark grey shale, coal and some light of Dark and medium grey siltstone with some light grey fine so becomes sandier with depth	man man o o o o o o o o o o o o o o o o o o o	1.1.1.1			
-75 - -80 -						

TEST WELL

PROJECT No. 4215

DATE July 10, 1987
DRILLER R. White Well Drilling

ELEVATION 20T - 169555

WELL No. G2 DEPTH 50.6 m CASING LENGTH 21.3 m ESTIMATED YIELD 9.1 L/S
STATIC WATER LEVEL 23.8 m

U.T.	T.M. STATIC WATER	LEVE	EL 2	23	.8 m
и рертн З	LITHOLOGIC DESCRIPTION	WATER BEARING FRACTURE	STRATA	WATER LEVEL	CUMULATIVE WELL YIELD (BLOW TEST) L/S,DEPTH IN METRES
- 5	Overburden				
10					
15		[////		
	Medium grey fine sandstone and siltstone		==		
20 -	Coal lense at 21.3 m Medium grey sandstone			7	
25	Soft grey shale			_	
30	Medium and dark grey sandstone and siltstone	1.1.1.1.			
35 -	Coal or coal shale Grey and brown platy siltstone		-=-		0.15-0.23 L/S
40 -	Fine and medium grey sandstone, brown sandstone and grey siltstone				3.0-3.8 L/S
45	Grey and brown sandstone			-	7.6 L/S
50 -	Coal to 50.4 m, then into grey sandstone			}	— 9.1 L/S
.]				-	T = 11-12°C
	<i>→</i>				
+					·
1					
]					
4				١	
					. -
+					H
				丄	

TEST WELL

PROJECT No. 4215

DATE July 21, 1987

DRILLER R. White Well Drilling
ELEVATION 137 m (Approx)

U.T.M. 20T-170552

WELL No. G3
DEPTH 43.3 m
CASING LENGTH 8.8 m
ESTIMATED YIELD 0.2 L/S
STATIC WATER LEVEL 32.0 m

U.T	. M . 20T–170552	STATIC WATER	LEVEL	32.	.0 m
O DEPTH (3)	LITHOLOGIC DESCRIPTION		WATER BEARING FRACTURE STRATA	WATER LEVEL	CUMULATIVE WELL YIELD (BLOW TEST) L/S,DEPTH IN METRES
- 5- - 10- - 15_ - 20- - 25- - 30- - 35- - 40-	Overburden (coal shale at @ 4.6 to 6.1 m) Soft mudstone/shale Grey fine grainey sandstone Medium to dark grey siltstone Grey fine to medium sandstone Hard red and grey mottled siltstone, some shale and sandstone Fine medium grey sandstone Grey siltstone, minor sandstone and shale Coal Mine opening, coal and sandstone fragment		はいいには、一般では、これには、これには、これには、一般では、一般では、これには、これには、これには、これには、これには、これには、これには、これに	▼=	
- 45-					0.20 L/S @ 43 m T = 16°C

APPENDIX 2. TEST WELL THERMAL LOGS (J. Leslie & Associates Ltd.)

TEMPERATURE LOG - SPRINGHILL MINE WATER PROJECT

Hole No.: 1 Total Depth: 82.1 m

Location: Can-Am Building Logged Depth: 82.1 m

Date: July 10, 1987, 15 hours after drilling.

Depth (m)	Temperature (C)	Lithology / Remarks
0.0	16.180	0 - 8.8 m: casing
5.0	14.185	•
10.0	14.829	0 - 7.6 m: fill, overburden and
15.0	10.642	weathered rock.
20.0	10.765	
25.0	10.875	7.6 - 82.1 m: mainly siltstone with
30.0	11.070	minor interbeds of
35.0	11.210	mudstone. Coal (approx.
40.0	11.351	1 m) at 32.0 and 39.6 m.
45.0	11.479	Coaly material at 45.7,
50.0	11.593	53.4 and 67.1 m.
55.0	11.651	Water at 30.0 m.
60.0	11.708	
65.0	11.780	•
70.0	11.694	
75.0	11.593	
80.0	11.522	
82.1	11.465	End of hole, end of log.

Hole No.: 1 Total Depth: 82.1 m

Location: Can-Am Building Logged Depth: 82.1 m

Date: August 15, 1987, 24 hours after No. 3 hole pump test.

Depth (m)	Temperature (C)	Lithology / Remarks
0.0	<u>-</u>	0 - 8.8 m: casing
5.0	20.901	
10.0	19.358	0 - 7.6 m: fill, overburden and
15.0	18.854	weathered rock.
20.0	17.256	
25.0	16.727	7.6 - 82.1 m: mainly siltstone with
30.0	16.538	minor interbeds of
35.0	11.031	mudstone. Coal (approx.
40.0	11.320	1 m) at 32.0 and 39.6 m.
45.0	11.439	Coaly material at 45.7,
50.0	11.571	53.4 and 67.1 m.
55.0	11.641	Water between 30.0 and 35.0 m.
60.0	11.705	
65.0	11.752	
70.0	11.734	
75.0	11.648	
80.0	11.582	
82.1	11.487	End of hole, end of log.

Hole No.: 2 Total Depth: 50.0 m

Location: Rink Logged Depth: 50.0 m

Date: July 12, 1987, 40 hours after drilling.

Depth (m)	Temperature (C)	Lithology / Remarks
0.0	23.456	0 - 21.0 m: casing.
2.5	20.575	0 00 4 6177
5.0	18.449	0 - 20.4 m: fill, overburden and
7.5	17.270	weathered rock.
10.0	15.970	20.4 - 48.5 m: mainly siltstone with
12.5	15.084	minor mudstone. Coal
15.0	15.592	fragments at 20.4 m.
17.5	14.037	48.5 - 50.0 m: coal.
20.0	12.953	
22.5	12.570	Water at 25.0 m.
25.0	8:877	
27.5	8.888	
30.0	8.921	
32.5	8.946	·
35.0	8.961	
37.5	8.986	
40.0	8.999	
42.5	8.994	
45.0	9.006	
47.5	9.189	
50.0	9.296	End of hole, end of log.

Hole No.: 2 Total Depth: 50.0 m

Location: Rink Logged Depth: 50.0 m

Date: August 15, 1987, 24 hours after No. 3 hole pump test.

Depth (m)	Temperature (C)	Lithology / Remarks
0.0 2.5	17.958 17.042	0 - 21.0 m: casing.
5.0 7.5	15.187 14.368	0 - 20.4 m: fill, overburden and weathered rock.
10.0 12.5 15.0	13.346 13.280 12.818	20.4 - 48.5 m: mainly siltstone with minor mudstone. Coal fragments at 20.4 m.
17.5 20.0	12.558 12.376	48.5 - 50.0 m: coal.
22.5	12.172	Water at 25.0 m.
25.0 27.5 30.0	9.017 8.905 8.933	
32.5	8.943	
35.0 37.5	8.953 8.974	
40.0	8.986 8.999	
45.0 47.5	9.029 9.131	
50.0	9.369	End of hole, end of log.

Hole No.: 3 Total Depth: 44.2 m

Location: No. 2 Slope Logged Depth: 41.8 m

Date: July 21, 1987, 1 hour after drilling.

	· · ·	
Depth (m)	Temperature (C)	Lithology / Remarks
0.0		0 - 8.3 m: casing.
2.5	22.462	
5.0	21.735	0 - 6.7 m: fill, overburden and
7.5	21.045	weathered rock. Coaly
10.0	20.112	at 6.7 m.
12.5	19.537	
15.0	18.964	6.7 - 40.9 m: mainly mudstone, minor
17.5	18.633	interbeds of siltstone
20.0	18.087	and fine grained
		sandstone.
22.5	17.676	40.9 - 44.2 m: mine workings.
25.0	17.462	
27.5	16.787	Water at 32.5 metres.
30.0	16.270	
32.5	13.360	
35.0	13.354	•
37.5	13.354	
40.0	13.354	
41.8	13.345	End of log.

(, m)	./% ./% 2% 2% 6% 6% 6%	150 025 025 025 025 025 025 025 025 025 0	100 A8800 TO	350 100 100 100 111			00 00 00	37 SEPIOLIT	86 XF2083	Se Koanoo	34 KMaHPO4	33 KKWPO4	32 TREMOLIT	OT KWHPO		79 DIOPSIDE	7373	27 KW3	26 Magers	25 KMBON	24 KCASS4		2 ARAGON	A CHARAIT	.20 BRUCITE	SYCON		24 1 25 1 25 1 25 1 25 1 25 1 25 1						TO SIDERITE	22	00 25 25 20 20 20 20 20 20 20 20 20 20 20 20 20	23	S	WEEDA	25	533	Sq.	25 m.		• • • • • • • • • • • • • • • • • • • •
 	2-4 00 00	13		- 60 - 60		6.5 6.0	gur Emil	- 100 1004 1501	1.0	0.43	e Col		90.2150	,0000	(C)	[rest	e 100	-	1.0	6000	и Сл	" 1774	150 6 m	13 10 10 10 10 10 10 10 10 10 10 10 10 10	. 8500		-4.3000	4 1 11	(da da Garaga		m te	3 60 3 60 3 60 3 60 3 60	en Secreta	-5, 1400	3,2300	.0000	.0000	001 	50	9	13.2180	20.1150	9,7000	r::	1
F (3) 6 E.FJ E (3)	4 (2) 4 (2)	12,700	4,636 #	500	H	5-4 000	100	1000	" " . "	2,7390	*	H 15. '1	-140.3000	e Post	CON	ETT'Y	CO	# fo. %			м		00	j			⊷K:⊶	6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	<u> </u>		(D) (D)	31	600	č.n	15. 5	pools n		-	50	-31,0000	8	63 60	Ca		1
ura, C.M T.ED ELLO T.E.C		454 640 640 640 640 640 640	03-00 08-3- 6-09 6-09 6-09	15 15 15 15 15 15 15 15 15 15 15 15 15 1		50	CO	37 12103	8	00 000 TOT		EG FFCG	2604	SS		,	1	2	525	00 00 00	ngo	# 60 60 60 60 60 60 60 60 60 60 60 60 60	MANCOS.	21 MGC83 AB	20 86		03 63 63	~~J 1	:: The in	.01 4	to Cal				4.00 	1001 1771 1771	7 803	on on co co	67.70	Dest.	0-21 3200 2004	to E5	CTO DOS	terra terra terra terra terra	· , , ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
1 0-0	1	60.50	l For	 	1	_{իու} ւլ	e0.0x	1	(3)	c :>	0	0	>	\Rightarrow	j.cb	J erosk	p de	1.	Ļ,	իա հ	~	0	j aran Na	413	A ccepts	(maraba) 3	<> t	~: +	¢	(31 to s	. I	, brat	1430	C.A.I	psa.	1	r N	1	p-y-tu	J ene t e	N	ra)	1-1	,
(U də	C.13 	" (C)	() 13 -13-	₽.₽ .₽⊶	E.H H	1:3 4,71	# (CD)	jun jun	es.	*			-	Ö	o.o	çn sə	ea Ea	en en	e.n Ja	<u>.</u> ;.	.		₽ •	5	0.71 0 0 0 0		0.01 # -06-	_ 0 <> <	co e	un ox c	0.0 34 - 45	ı ça	្ន	çin es	000 600	en	6.73 -6%	400 600 600	ça Ö	jea S	 (C)	en en	o p		!
10 10 14 14	6.63	60 60 60 60 60	1	1-0 1-0 1-0 1-0 1-0 1-0 1-0 1-0 1-0 1-0	4.600	1300			1		j	162,2060	CO	100,0890			13170	*****		r, ,r,	17.13	200	1,17		17.0.31	former 1			.D (····•	te for	1 029	10.0	19.3	1.11	£.71	laret.	100	11.11	39,1020	1.5	-Fin	40,0800	CD) 300) ! :
																						•				•													•						

							•
	46 ILLITE	54.6840	-40.3100	46 KSO4	-1	5.4	1,95.1636
1	47 KAOLIN	49.1500	-36.9100	47 HPO4	-2	5.0	95.9794
	48 HALLOY	44.6800	-32.8200	\ 48 H2PO4	-1	5.4	96.9873
	49 BEIDEL	60.3550	-45.2600	49 CAF+	1	5.0	59.0784
	50 CHLOR	54.7600	-90.5100	The EE 50 NAHPO4	-1	5.4	118.9692
	51 ALUNIT	29.8200	-85.3200	51 AL	3	9.0	26.9815
	52 GIBCRS	14.4700	-32.7700	52 ALOH	2	5.4	43.9889
	53 BOEHN	11.9050	-33.4100	53 AL(OH)2	1	5.4	60.9962
	54 PYRGPH	.0000	-42.4300	54 AL(OH)4	-1	4,5	95.0110
	55 PHILIP	.0000	-19.8600		<u>.</u> 2.	7,4 5,4	
				-1 155 ALF			45.9799
:	·56 ERION	.0000	.0000	55 ALF2	1	5.4	64.9783
	57 CLINOP	.0000	.0000	57,ALF3	Ų	.0	83.9767
	58 MORDEN	.0000	0000	59 ALF4	- [4.5	102.9751
	59 NAHCOL	3.7200	5480	59 ALSO4	1	4.5	123.0431
	60 TRONA	-18.0000	7950	50 AL(SD4)2	-1	4.5	219.1047
}	61 MATRON	15.7450	-1.3110	61 KHP04	-1	5.4	135.0814
	62 THRNAT	-2.8020	.1250	52 F	-1	3.5	18.9984
	63 FLUOR	4.7100	-10.9600	63 HSO4	-1	4.5	97.0696
! ! !	64 MONTCA	58.3730	-45.0000 ~	64 K	1	9.0	1.0080
	65 HALITE	.9180	1.5820	65 FEH2PO4	1	5.4	152.8340
1	68 THENAR	5720	1790	SE H28 CALC,	0	.0	34.0799
	67 MIRABI	18.9870	-1.1130	67 KS	-1	3.5	33.0720
	68 MACKIT	.0000	-4.5310	-68 S	-2	5.0	32.0540
	69 KHCO3	-3.5510	10.3290±	69 SRHC03	1	5.4	148.6373
) 	70 KNACO3	8.9110	1,2580	70 PO2	0	.0	31.9988
·	71 KNAHCC3	.0000	2500	71 PCH4	0	.0	15.0430
) .	72 KNASO4	1.1200	.7200	72 AH20	0	.0	18.0153
	73 KKS04	. 2.2500	.8470£	73 MAHPA4	0	.0	120.2914
·	74 KMGC03	2.7100	2.9800*	74 CAHPO4	0	.0	136.0594
γ	75 K#GHC03	1.0770	1.0680*	75 CAPO4	-1	5.4	135.0514
<u> </u> }	75 K#8504	4.5000	2.2380	76 CAH2PC4	1	5.4	137.0673
	77 KCAOH	1.1900	1.4000	77 FE(0H)2	1	5.4	89.8616
	78 KCAHCO3	4.1100	1.0950*	78 FE(OH)3		.0	105.8689
l,	79 KCAC03	3.5560	3.2240±			5.4	123.8762
*	80 KCAF+	4.1200	.9400	80 FE(OH)2	Ō		89.8616
•	81 KALOH	1.4300	9.0300				6.9390
)	82 KALOH2	.0000	18.7000	82 LIOH	0	.0	23.9454
•	83 KALOH4	-11.1600	33.0000	83 LIS04	-1	.v 5,0	103.0005
t.	84 KALF	.0000	33.0000 7.0100	94 NH4CALC	-:	3.0 2.5	19.0386
i .	85 KALF2	20.0000					
	85 KALF3		12.7500	85 NO3	-1		62.0049
			17.0200	85 H2CO3			62.0253
	87 KALF4		19.7200	87 B TOT			10.8100
	88 KALS04	2.1500					87.5200
f	89 KAS042	2.8400		89 SROH	1	5.0	
3	90 KHS04	4.9100	1.9870*		2	5.0	137.3400
	91 KH280	-65.4400	40,6440	91 BADH	1	5.0	154.3474
	92 KH28		-5.9420%	92 NH4804	-1		114.1002
7	93 KHS		-12,9180	93 HCL	0	.0	38.4610
	94 KOXY	34.1570	-20,7900		Ç		58:4428
1	95 KCH4	-57,4350	30.7410	82 KOT	Û	.0	
	95 HYXAPT	17.2250	-59.3500	96 H2804	. 0		96.0775
	97 FLUAPT	19.6930	-68,7900	97 SRCC3) 0	.0	147.8294
1							

with 1000 test 1000 total later than 1500 tests to		110 99 80 CHALC 100 81 CHALC 10
98 - 1	-187.0000 1.75000 1.75000 1.0000 1.75000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	-14.6150 -25.150000 -25.150000 -25.150000 -25.22000 -25.35500
1.570 0 50 0 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		20 21 24 24 25 25 25 25 25 25 25 25 25 25 25 25 25
		15 1 1 1 1 1 1 1 1 1
·		LONDOODELLODOODE
· · · · · · · · · · · · · · · · · · ·		79,9090 1152,8340 154,9400 154,9400 178,9370 1115,9390 1116,9390 1116,9390 1116,9390 1116,9390 1116,9390

1,0,3	re.	• •	uij.	Ö	60	00	Ö	CO	1001	93	100 150	15.0	[][]]	99	-4			CQ 	<u></u>		-1	1	i. 1	-1	111	100	1373 4	e 100	001 001	0.00	(0°) (00)	17774	iji i L	*****		CO		CO CO	En En	11 11	11 11 12	10 10 10	ŗ.ŋ	c.n
		; ; ; ; ; ; ;	-) - 1) - 1) - 1)	## ## ## ## ## ## ## ## ## ## ## ## ##			FORE	F	5	****	5	10000X		245		ZHIME		 		******	8			00 00 00 00 00		180	10.00 C-01	60	-		63			75	35	cap		20 20 25	37:-	rg Tg	31.2	X 0240		MESOUE
	100		15 S	65	C.3	00 00	0.05	17.3800	1.710	H Januaria Property	522	.60	9	4000	.090		all:	(J)	.0000	.00	er forute	5	. 1000	1.3	E0.020	60 150 60	.000	1,2000	3,700	.000	4.0	.000		,000	.000		.000	.() ())	103 4 55 5 5		er Capt alter	ça En	* 60 45 15	. 769
ui) dibi	10-0 10-0 10-0 10-0	1 1 1 1 1	·	600 600 600 600	00	9,5220	# 1-3 1-3	1-44	# 0.00 55-41 45-4	6.01 6.21 6.31	CO.	0.71	6.100	60	E.G	10 10 10	in Un	ter se he	7.5	00 00 00 00	00 05 105	10 60 60	124	00	\$25 -64 -65		1333	1(.)	C333		100 153	-130 5313		elin hom	gn em	507	1.71 1.71 100		9	100	50 50 50		-18,4000	Ps.3 bank pank
										,									•																									

DENOTES THAT AN ANALALICAL EXAMESSION LOG KI HAS BEEN HISED

Ī	NREACT	, 17 Å	" · B	C		<u>.</u> E	F
•					•		•
13	CALCITE	-171.9065	077992998	2839.3191	0000E+00	.000000E+00	7.1595001E+01
14	KH3 <u>SI04</u>	6.3680	016346000	-3405.8999	0000E÷00	.000000E÷00	.0000000E+00
- 15	KH28I04	39.4780	065926999	-12355.0996	.0000E÷00	.000000E+00	.0000000E+00
19	GYPSUM	82.0904	000000000	-3853.9360	.0000E+00	.000000E÷00	-2.9811480E+01
22	ARAGONI	T -171.9773	077992998	2903.2930	.0000E÷00	.000000E+00	7.1595001E÷01
25	KHGOH	.6840	.005129500	.0000	.0000E÷00	.000000E÷00	.0000000E÷00
25	KH3B03	28.5059	.012078000	1573.2100	0000E+00	.0000000E+00	-1.3225800E÷01
-27	KNH3	.6322	001225000	-2835.7600	.0000E÷00	.000000E+00	.0000000E÷00
35	KH2C03	356.3094	.060919639	-21834.3691	.0000E+00	1.684915E÷05	-1.2683390E+02
69	KHC03	107.8871	.032528490	-5151.7900	.0000E+00	5.637139E+05	-3.8925610E+01
73	KK304	3.1080	.000000000	-673.6000	.0000E÷00	.0000000E+00	.0000000E+00
74	KM6003	.9910	.005570000	.0000	.0000E÷00	.000000E+00	.0000000E÷00
75	K#6HCD3	2.3190	011056000	,0000	2.2981E-05	.0000000E+00	.0000000E÷00
78	KCAHCO3	1209.1200	.312940001	-34765.0508	.0000E÷00	.000000E+00	-4.7878201E+02
79	KCACE3	-1228.7321	299439996	35512.7500	.0000E÷00	.000000E÷00	4.8581799E÷02
90	KHS04	-5.3505	.018341200	557.2461	.0000E+00	.000000E+00	.0000000E÷00
92	KH2S	11.1700	023860000	-3279.0000	.0000E÷60	.000000E+00	.0000000E÷00
143	STRONT	155.0305	.000000000	-7239.5942	.0000E÷00	.000000E+00	-5.6586380E+01
144	CELEST	73.4150	.000000000	-3603.3411	.0000E÷00	.000000E+00	-2.7443701E+01
149	KSRHČO3	-3.2480 .	.014867000	.0000	.0000E+00	.000000E÷00	.0000000E÷00
. 153	KH	-606.5220	097611003	31286.0000	.0000E+00	-2.170870E÷08	2.1868434E+02
170	KSRC03	-1.0190	.012826000	.0000	.0000E+00	.000000E+00	.0000000E+00
i Sp	ringhill	Geothermal Test	Well No. 3,	T=18C, after	7 days		

INITIAL SOLUTION

TEMPERATURE = 18.00 DEGREES C PH = 6.840
ANALYTICAL EPMCAT = 57.098 ANALYTICAL EPMAN = 58.668

**** OXIDATION - REDUCTION ****

DISSOLVED OXYGEN = .200 MG/L
EH MEASURED WITH CALOHEL = 99.0000 VOLTS FLAS CORALK PECALC IDAVES
MEASURED EH OF ZOBELL SOLUTION = 99.0000 VOLTS 2 0 3 0
CORRECTED EH = 99.0000 VOLTS
PE COMPUTED FROM CORRECTED EH = 100.000

*** TOTAL CONCENTRATIONS OF INPUT SPECIES ***

	TOTAL	LOG TOTAL	TOTAL
SPECIES	MOLALITY	MOLALITY.	MG/LITRE
CA 2	9.11794E-03	-2.0401	3.64000E÷02
MG - 21_	6.07043E-03	-2.2168	1.47000E+02
NA 1	2.53289E-02	-1.5964	5.80000E+02
K 1	6.93247E-04 -	-3.1591	2.70000E÷01
CL -1	1.27433E-02	-1.8947	4.50000E+02
SD4 -2	1.755835-027	-1.7555	1.88000E+03
HCO3 -i	1.10176E-02	-1.9579	6.69600E+02
SID2'TOT 0	2.67349E-04	-3.5729	1.60000E+01
FE 2 1	3,95499E-04	-3.4029	2.20000E÷01
F -1	1.05690E-05	-4. 9750.	2.00000E-01
ANAL H2S 0	2.35676E-06	-5.6277	8.00000E-02
003 -2	6.59212E-06	-5.1744	4.00000E-01
NH4 1	9.46170E-05	-4.0240	1.70000E+00
B TOT 0	11754525-05	-4.7533	1.90000E-01
MK 2	2.01014E-05	-4.6968	1.10000E÷00

*** CONVERGENCE ITERATIONS ***

ITERATION	S1-ANALCO3	92-904T0T	S3-FTOT	S4-PTOT	S5-CLTOT
					. •
•	5.717E-04	1.038E-02	1.044E-08	.000E÷00	3.050É-07
2	2.291E-04	1.852E-03	4.414E-07	.000E+00	2.592E-08
3	-8.650E-08	-2.349E-05	3.759E-10	.000E÷00	5.259E-10
4	1.806E-06	1.137E-05	3.457E-09	.000E+00	-6.206E-10

Springhill Geothermal Test Well No. 3, T=180, after 7 days

****DESCRIPTION OF SOLUTION ****

	AMAL.	COMP.	PH	ACTIVITY H20 = .9986
EPMCAT	57.10	47.35	-5.840	PCQ2= 7.248505E-02
Ebhan	58.67	48.94		LOG PC02 = -1.1398
			TEMPERATURE	F02 = 5.4298085-48
EH = ***	1222 PE =	3.244	18.00 DEG C	PCH4 = .000000E÷00
PE CALC	§ = -2.8	175		CG2 TGT = 1.396890E-02
PE CALC	DCX= 13.94	<u> </u>	IONIC STRENGTH	DENSITY = 1.0000
PE SATO	DOX= 3.24	.4	7.172807E-02	TDS = 2959.3%6/L
TOT ALK	= 1.104E	01 ME2		CARB ALK = 1,103E+01 MEQ
ELECT	= -1.500E4	-00 ME9		

IN COMPUTING THE DISTRIBUTION OF SPECIES, PE = 3.244 EQUIVALENT EH = 1.187VOLTS

DISTRIBUTION OF SPECIES

			DIST	RIBUTION\OF	SPECIES		
	I SPECIES		PPM	MOLALITY	ACTIVITY	LOG ACT	GAMMA
	1 CA	2	2.4520E+02	6.1420E-03	2.6551E-03	-2 . 576	4.3228E-01
	2 MS		1.0592E+02	4.3740E-03	1.95115-03	-2.710	4.4607E-01
		_	5.6301E÷02		1.9768E-02	-1.704	8.0400F-01
	4 K	_	.2.6160E+01		5.3059E-04	-3.275	7.8994E-01
	54 K	. 1	1.7271E-04	1.7202E-07	1.4454E-07	-6.840	.8.4027E-01
	5 CL	- <u>†</u>	4.4999E÷02	1.2743E-02	1.0055E-02	-1.997	7.8994E-01
	5 504	-	1.2122E÷03	1.2569E-02	5.2942E-03	-2.276	4.1789E-01
•	7 HC03	<u>-</u> 1	6.2931E÷02	1.0355E-02	8.3821E-03	-2.077·	8.0951E-01
	, ness 18 CO3	<u>-</u> 2		5.4278E-06	2.3308E-06		4.2942E-01
	85 H2CD3	0	1.8283E+02	2.9593E-03	3.0133E-03	-2.521	1.0182E÷00
	27 OH	-1	8.7435E-04	5.1615E-08	4.0671E-08		7.8798E-01
		-	1.7790E-01	9.4011E-06	7.4079E-06	-5.130	7.8798E-01
	62 F .	-1	5.9930E-04	1.4562E-08	1.1942E-08	-7.923	8.2009E-01
	19 MGOH 23 MGSO4 AQ	i A	1,7484E+02	1.4583E-03	1.4828E-03		1.0167E+00
•	22 NGHCO3	0	1.9555E+01	2.3008E-04	1.9926E-03		7.9410E-01
•	21 MGCOS AQ	1	3.2201E-01		3.8978E-06	-3./30 -5.409	1.0167E+00
		٠.		3.8340E-06			7.9988E-01
عام ا مام ا	20 MGF	1	4.2604E-02	9.8760E-07	7.8996E-07	-6.102	
•	29 CAOH	1.	1.8023E-04	.3.1696E-09	2.5846E-09	-8.588	8.1543E-01
•	32 CAS94 A0	.0	3.5937E+02	2.8502E-03.	2.6943E-03	-2.570	1.0167E+00
	30 CAHCO3	1	3.1190E÷01	3.0974E-04	.2.5074E-04	-3.601	8.0951E-01
	31 CACO3 AQ	0	9.9657E-01	9.9964E-06	9.2041E-06	-5.036	9.2074E-01
	49 CAF+	1	1.0590E-02	1.7996E-07	1.4493E-07	-6.839	8.0535E-01
	44 NASO4	-1	7.6880E+01	6.4834E-04	5,2483E-04	-3.280	8.0951E-01
÷	43 NAHCO3	0	7.6674E÷00	9.1651E-05	9.3177E-05	-4.031	1.0167E+00
•	42 NACO3	-1	6.0752E-02	7.3487E-07	5.9488E-07	-6.226	8.0951E-01
•	94 NACL	0	1.1393E-29	1.9573E-34	1.9899E-34		1.0167E+00
	46 KS04		2.8971E+00				
		0	3.9012E-31	5.2535E-36	5.3410E-36		
-	63 HSO4		7.4087E-03	7.6627E-08	6.1293E-08	-7.213	7.9988E-01
	24 H4SIO4AQ		2.5576E+01				
	25 H38I04	-1	1.8262E-02	1.9278E-07	1.5309E-07		7.9410E-01
-	25 H2SI04	-2	2.00245-07	2.1364E-12	9.1744E-13		4.2942E-01
		0	4.4051E-02	1.2977E-06	1.3193E-06	-5.880	1.0167E+00
	67 HS		3.4886E-02	1.0590E-06			7.8798E-01
	£8 \$		3.2401E-08		4.2677E-13		4.2066E-01
	8 FE		1.6056E+01	2:9854E-04			
	9 FE	3	3.6877E-09	8.6294E-14	1.3843E-14		2.0882E-01
	10 FEOH	2	6.9809E-05	9.62005-10	4.046BE-10		4,2066E-01
	11 FEOX	1	1.4694E-02	2.0249E-07	1.6307E-07		8.0535E-01
	12 FE(OH)3	-1	1.6267E-10	1.5282E-15	1.2307E-15		8.0535E-01
	77 FE(OH)2	1	2.3153E-01	2.5868E-06	2.0940E-08		8.0351E-01
	78 FE(CH)3		1.7797E-02	1.5719E-07	1.5998E-07		1.0157E÷00
	79 FE(OH)4	- <u>'</u>	1.7899E-03	1.4507E-08	1.1743E-08		8.0951E-01
	90 FE(OH)2	0	4.5291E-07	5.0601E-12	5.1444E-12		1.0157E÷00
-	15 FE894	İ	9.7727E-08	6.4599E-13	E.2018E-15	-12.284	8.0535E-01

```
15 FECL
             2 5.8611E-10 6.4451E-15 2.7112E-15 -14.567 4.2066E-01
 28 FECL2
           1 4.2896E-11 3.3977E-16 2.7363E-16 -15.563 8.0535E-01
 33 FECL3 0 4.3197E-14 2.6737E-19 2.7182E-19 -18.566 1.0167E+00
 34 FES04
             0 1.5685E+01 1.0366E-04 1.0539E-04 -3.977 1.0167E+00
101 MN '
        - - 2 8.0706E-01 1.4748E-05 6.5206E-06 -5.186 4.4213E-01
102 MN
             3 3.2810E-23 5.9957E-28 1.2520E-28 -27.902 2.0882E-01
106 MNOH
            1 6.6224E-05 9.2539E-10 7.4526E-10 -9.128 8.0535E-01
107 MN(OH)3 -1 3.4738E-15 = 3.2914E-20 2.6507E-20 -19.577 8.0535E-01
111 MNHCC3
           1 4.0760E-01 3.5290E-06 2.8421E-06 -5.546 8.0535E-01
109 MNS04
           -0 2.2438E-01 1.4918E-06 1.5166E-06 -5.819 1.0167E+00
103 MNCL
             1 2.9689E-02 3.2974E-07 2.6555E-07 -6.576 8.0535E-01
104 MMCL2 0 8.9587E-05 7.1456E-10 7.2656E-10 -9.139 1.0167E+00
105 MNCL3
            -1 6.5819E-07 4.0965E-12 3.2991E-12 -11.482 8.0535E-01
108 MNF
           1 3.1272E-05 4.2462E-10 3.4196E-10 -9.466 8.0535E-01
115 HMNG2
           -1 8.5088E-15 9:7076E-20 7.8179E-20 -19.107 8.0535E-01
36 H3D03 AQ 0 1.0818E+00 1.7565E-05 1.7857E-05 -4.748 1.0167E+00
37 H2E03
          -1 4.9393E-03 8.1528E-08 6.3151E-08 -7.200 7.7459E-01
38 NH3 AQ
           0 2.7226E-03 1.6050E-07 1.6318E-07 -6.787 1.0167E+00
39 NH4
            1 1.5924E+00 8.8630E-05 6.8652E-05 -4.163 7.7459E-01
92 NH4504
            -1 5.6075E-01 5.8140E-08 4.8823E-08 -5.230 8.0535E-01
```

MOLE RAT	IOS FROK _ MOLALITY			IOS FRÓM MOLALITY	L0	LOG ACTIVITY RATIOS				
CL/CA =	1.3976E÷00	CL/CA.	=	·2.0747E+00	LOG	CA/H2	=	11.1041		
. CL/MG = -	2.0992E+00	CL/MG -	=	2.9134E+00	L06	MG/H2	=	10.9703		
CL/NA =	5.0311E-01	CL//NA	=	5.1829E-01	LDG	NA/H1	= `	5.1360		
CL/K =	1.8382E+01	CL/K	=	1.8972E+01	L06	K/H1	=	3.5648		
CL/AL =	1.2743E+28	CL/AL	=	1:2743E+28	L06	AL/H3	=	20.5200		
CL/FE =	3.2221E+01	CL/FE	=	4.4148E+01	L08	FE/H2	=	9.7859		
CL/SO4 =	7.2577E-01	CL/S04	=	1.0058E+00	L06	CA/M6	= .	.1338		
CL/HC03 =	1.1566E÷00	CL/HC03	=	1.2307E+00	L06	NA/K	=	1.5712		
CA/MG =	1.5020E+00	CA/M6	=	1.4042E÷00						
NA/K =	3.6537E+01 ·	NA/K	=	3.6605E+01	•					

Springhill Geothermal Test Well No. 3, T=18C, after 7 days

	PHASE	IAP	KT	LOG IAP	LOG KT	IAP/KT	LOG IAP/KT
18	ANHYDRIT	1,405E-05	4.918E-05	-4.252	-4.308	2.5589-01	-,544
22	ARAGONIT	S.:88E-09	5.072E-09	-0.208	-8.295	1.220E÷00	.085
151	ARTIN	2.707E-25	4.290E-19	-25.568	-18.368	5.309E-08	-7.200
20	BRUCITE	3.2275-18	3.759E-12	-17.491	-11.425	8.587E-07	-6,086
13	CALCITE	5.188E-09	3.600E-09	-8.208	-8:444	1.719E+0(.235
98	CHALC	2.7245-04	2.487E-04	-3.565	-3.604	1.095E÷00	,039
21	CHRYSOTL			-59.603	-52,286		-7.315
30	CLEMSTIT	8.8025-22	1.029E-17	-21.055	-16.988	8.5555-05	-4.068
100	SILGEL	2.724E-04	1.596E-03	-3.565	-2.797	1.706E-01	769
29	DIOPSIDE			-41.977	-36.592		-5.385
12	DOLOMITE	2.814E-17	1.192E-17	-18.551	-18.924	Ž.351E+00	.373

								5.949E÷01		,		
								6.058E÷00				
					9.057E-12			1.509E-02			٠	
			FORSTRI	Ī								
			GDETH	•		-36.030			9.617			
			GREENA		•	-63,156	-63.190		.034			
		113	GREGITE	7.112E-03	1.072E-18	-2.148	-17.970	6.637E+15	15.822			
- ; -	÷.,			1.402E-05					248			
				1.990E-04								
	•	109	HEMATI	. 2.093E÷13	3.440E-04	13,321	-3.463	6.083E+15	15.784			
٠.		118	HUNTITE	5.820E-34	8.789E-31	-33,235	-30.056	5.822E-04	-3.179			
٠			HYDMAG						-13,492			
								3.150E+01				
								8.085E-08				
								8.927E+08			•	
								6.153E-01				
								5.566E+18				
								5.719E-05				
		59	NAHCOL	1.657E-04	2.435E-01	-3.781	514	5.806E-04	-3.167	.\$		
		51	HATRON	8.984E-10	2.590E-02	-9.047	-1.588	3.483E-08	-7,458			
				4.529E-09	7.781E-06	-8.344	-5.109	5.921E-04	-2.235			
		115						8.258E+22				
		102	QUARTZ	2.724E-04	7.680E-05	-3.565	-4.115	3.546E÷00	.550			
			SEPIOLIT						-5.110			
		10	SIDERITE	.2.975E-10	3.453E-11	-9.527	-10,462	8.614E+00	.935			
		.101	SILGLAS	2.724E-04	8.031E-04	-3,565	-3.095	3.391E-01	-,470			
	•	38	TALC			-66.732	-63,004		-3.648			
* * *	-	58	THENAR	2.069E-06	6.778E-01	-5.584	169	3.052E-06	-5.515			
		62	THRNAT	9.095E-10	1.494E+00	-9.041	.174	6.088E-10	-9.216			
									-8.796	•		
		50	TRONA	1.505E-13	3.328E-01	-12.822	478	4.522E-13	-12.345			
		154	SEP PT			-45.678	-37,212		-8.458			
• •		172	MANGANO	3.117E÷08	2.298E+18	8.494	18.361	1.356E-10				
		173	PYROLUST	5.020E+02	2.373E+16	2.701	16.375	2.116E-14	-13.575			
		174.	BIRNSITE	5.020E+02	1.233E+18	2.701	18.091	4.071E-16	-15,390			
								1.573E-15				
								3.765E-15				
		177	HAUSMITE	ı		45.649	62.952		-17.303			
-		178	MNOH2	1.079E-20	1.037E-13	-19,967	-12.984	i.040E-07				
			HNOH3			-50.075			-14.076			
		180	MANGANIT	4.134E-08	5.781E-01	-7.384	-,238	7.1525-08	-7.146			
		181	RHODOCHR	1.520E-11	3.145E-11	-10.818	-10.502	4.832E-01	3/6			
		183	MNCL2	6.607E-10	1.176E+09	-9.180	9.671	5.517E-19	-18.251			
		184	MNCL2, 1W	6.598E-10	4.451E+05	-9.181	5.648	1.487F-15	-14.879		•	
		185	HACL2, 2W	5.589E-10	8.788E+03	-9,181	3,944	1.482E-15 7.498E-14	-13.125			
		186	MNCL2,4W	8.571E-10	2.534E+02	-9.182	2,404	2.594E-12	-11.588			
								3.932E-11				
								S.846E-11				
•								4.717E-09				
		190	MKSO4	3.452E-08	8.748E÷02	-7.48?	2,942	3.947E-11	-10.404			
		191	MK2934,3				-5.023		-57.811			
			• -					•				

.